
New developments for
gretl function packages

Allin Cottrell

Wake Forest University

Gretl Conference, Gdańsk, June 2023

Background

I’m returning to a topic I spoke about at Bilbao
(2009) and Toruń (2011): gretl function
packages.

Brief recap on the role of function packages. . .

Since November 2021: about 68000 downloads
of 205 packages. 165 packages had more than
100 downloads; 69 of them had more than 400
downloads. (Greatest number for a single
package: 1276 for lp-mfx.)

Background

I’m returning to a topic I spoke about at Bilbao
(2009) and Toruń (2011): gretl function
packages.

Brief recap on the role of function packages. . .

Since November 2021: about 68000 downloads
of 205 packages. 165 packages had more than
100 downloads; 69 of them had more than 400
downloads. (Greatest number for a single
package: 1276 for lp-mfx.)

Background

I’m returning to a topic I spoke about at Bilbao
(2009) and Toruń (2011): gretl function
packages.

Brief recap on the role of function packages. . .

Since November 2021: about 68000 downloads
of 205 packages. 165 packages had more than
100 downloads; 69 of them had more than 400
downloads. (Greatest number for a single
package: 1276 for lp-mfx.)

New developments at a glance

▶ Markdown for package documentation.
(Prior forms: plain text or PDF).

▶ Facility for fine-tuning the dialog box
shown for a package (relates to the “GUI
hook” for packages).

▶ Support for relatively tight integration with
R (provide gretl interfaces for selected R
packages).

New developments at a glance

▶ Markdown for package documentation.
(Prior forms: plain text or PDF).

▶ Facility for fine-tuning the dialog box
shown for a package (relates to the “GUI
hook” for packages).

▶ Support for relatively tight integration with
R (provide gretl interfaces for selected R
packages).

New developments at a glance

▶ Markdown for package documentation.
(Prior forms: plain text or PDF).

▶ Facility for fine-tuning the dialog box
shown for a package (relates to the “GUI
hook” for packages).

▶ Support for relatively tight integration with
R (provide gretl interfaces for selected R
packages).

Markdown for documentation

Gretl’s markdown conversion piggy-backs off
Uwe Jugel’s md2pango.

But uses GLib regular expressions rather than
Javascript, and targets GtkTextTags rather than
pango markup.

To use markdown, give your help file an .md
suffix. In the spec file do:

help = myhelp.md

and/or

guihelp = myguihelp.md

Markdown for documentation

Gretl’s markdown conversion piggy-backs off
Uwe Jugel’s md2pango.

But uses GLib regular expressions rather than
Javascript, and targets GtkTextTags rather than
pango markup.

To use markdown, give your help file an .md
suffix. In the spec file do:

help = myhelp.md

and/or

guihelp = myguihelp.md

Markdown for documentation

Gretl’s markdown conversion piggy-backs off
Uwe Jugel’s md2pango.

But uses GLib regular expressions rather than
Javascript, and targets GtkTextTags rather than
pango markup.

To use markdown, give your help file an .md
suffix. In the spec file do:

help = myhelp.md

and/or

guihelp = myguihelp.md

Markdown for documentation

Gretl’s markdown conversion piggy-backs off
Uwe Jugel’s md2pango.

But uses GLib regular expressions rather than
Javascript, and targets GtkTextTags rather than
pango markup.

To use markdown, give your help file an .md
suffix. In the spec file do:

help = myhelp.md

and/or

guihelp = myguihelp.md

Markdown ‘flavour’

▶ First and second-level headings: start a
(single) line with # or ##

▶ Boldface: **text**
▶ Italic: *text* or _text_
▶ Monospace: ‘text‘
▶ Itemized list: each item starts with “- ” on

a new line
▶ Enumerated list: each item starts with

(e.g.) “1. ” on a new line
▶ Code block: starts and ends with ‘‘‘ on its

own line

More markdown details

▶ Itemized and enumerated lists cannot be
nested.

▶ http[s] URLs turn into hyperlinks.
▶ ASCII straight double quotes replaced by

left- and right-hand quotes.

In principle the range of conversions could be
extended if necessary.

Take a look at an example. . .

More markdown details

▶ Itemized and enumerated lists cannot be
nested.

▶ http[s] URLs turn into hyperlinks.
▶ ASCII straight double quotes replaced by

left- and right-hand quotes.

In principle the range of conversions could be
extended if necessary.

Take a look at an example. . .

More markdown details

▶ Itemized and enumerated lists cannot be
nested.

▶ http[s] URLs turn into hyperlinks.
▶ ASCII straight double quotes replaced by

left- and right-hand quotes.

In principle the range of conversions could be
extended if necessary.

Take a look at an example. . .

More markdown details

▶ Itemized and enumerated lists cannot be
nested.

▶ http[s] URLs turn into hyperlinks.
▶ ASCII straight double quotes replaced by

left- and right-hand quotes.

In principle the range of conversions could be
extended if necessary.

Take a look at an example. . .

More markdown details

▶ Itemized and enumerated lists cannot be
nested.

▶ http[s] URLs turn into hyperlinks.
▶ ASCII straight double quotes replaced by

left- and right-hand quotes.

In principle the range of conversions could be
extended if necessary.

Take a look at an example. . .

Function package dialog box

Prior means of inflecting the widgets in a
package’s dialog box, via “decoration” of the
parameters in a function’s signature.

▶ Default values.
▶ Labels for parameters.
▶ Labels for values of discrete integer

parameters.
▶ bool parameter type → check box shown.

Function package dialog box

Prior means of inflecting the widgets in a
package’s dialog box, via “decoration” of the
parameters in a function’s signature.

▶ Default values.
▶ Labels for parameters.
▶ Labels for values of discrete integer

parameters.
▶ bool parameter type → check box shown.

Function package dialog box

Prior means of inflecting the widgets in a
package’s dialog box, via “decoration” of the
parameters in a function’s signature.

▶ Default values.
▶ Labels for parameters.
▶ Labels for values of discrete integer

parameters.
▶ bool parameter type → check box shown.

Function package dialog box

Prior means of inflecting the widgets in a
package’s dialog box, via “decoration” of the
parameters in a function’s signature.

▶ Default values.
▶ Labels for parameters.
▶ Labels for values of discrete integer

parameters.
▶ bool parameter type → check box shown.

Function package dialog box

Prior means of inflecting the widgets in a
package’s dialog box, via “decoration” of the
parameters in a function’s signature.

▶ Default values.
▶ Labels for parameters.
▶ Labels for values of discrete integer

parameters.
▶ bool parameter type → check box shown.

GUI-oriented signature: example

function bundle GUI_rf (\
series y "dependent variable",
list X "independent variables",
scalar pctrain[20:95:60:1] "training data, %",
int mode[0:2:0] {"auto", "regress", "classify"},
bool tune[1] "tune ’mtry’",
int verbosity [1:2:2])

And let’s see the GTK representation. . .

GUI-oriented signature: example

function bundle GUI_rf (\
series y "dependent variable",
list X "independent variables",
scalar pctrain[20:95:60:1] "training data, %",
int mode[0:2:0] {"auto", "regress", "classify"},
bool tune[1] "tune ’mtry’",
int verbosity [1:2:2])

And let’s see the GTK representation. . .

New inflections

▶ A given parameter (of any type) can be
marked as dependent on a specified
boolean parameter.

▶ A parameter of type int can be given a
data-dependent default, minimum and/or
maximum value (to be fixed at run time).

▶ A parameter of type list can be inflected
in up to three ways (more on this shortly).

We don’t try to cram these things into the
signature of the function in question. Instead
we use an auxiliary bundle.

New inflections

▶ A given parameter (of any type) can be
marked as dependent on a specified
boolean parameter.

▶ A parameter of type int can be given a
data-dependent default, minimum and/or
maximum value (to be fixed at run time).

▶ A parameter of type list can be inflected
in up to three ways (more on this shortly).

We don’t try to cram these things into the
signature of the function in question. Instead
we use an auxiliary bundle.

New inflections

▶ A given parameter (of any type) can be
marked as dependent on a specified
boolean parameter.

▶ A parameter of type int can be given a
data-dependent default, minimum and/or
maximum value (to be fixed at run time).

▶ A parameter of type list can be inflected
in up to three ways (more on this shortly).

We don’t try to cram these things into the
signature of the function in question. Instead
we use an auxiliary bundle.

New inflections

▶ A given parameter (of any type) can be
marked as dependent on a specified
boolean parameter.

▶ A parameter of type int can be given a
data-dependent default, minimum and/or
maximum value (to be fixed at run time).

▶ A parameter of type list can be inflected
in up to three ways (more on this shortly).

We don’t try to cram these things into the
signature of the function in question. Instead
we use an auxiliary bundle.

An example

We write a function which returns a bundle, containing a

sub-bundle named for each parameter we want to

inflect—here seed, n_train and X.

function bundle rf_ui_maker (void)
maxstr = "ceil(0.9*$nobs)"
defstr = "ceil(0.65*$nobs)"
bundle b
b["seed"] = _(depends="use_seed")
b["n_train"] = _(maximum=maxstr, default=defstr)
b["X"] = _(singleton=0, exclude="y", no_const=1)
return b

end function

Hooking it up

The function we just saw is registered in the
spec file for the package:

ui-maker = rf_ui_maker

It will then be called when the user selects the
menu item associated with GUI rf(), guiding
the GUI treatment of the parameters.

We’ll use an expanded signature in this case,
adding these two parameters to GUI rf():

bool use_seed[0] "set random seed"
int seed[0:2147483647:1234567]

Hooking it up

The function we just saw is registered in the
spec file for the package:

ui-maker = rf_ui_maker

It will then be called when the user selects the
menu item associated with GUI rf(), guiding
the GUI treatment of the parameters.

We’ll use an expanded signature in this case,
adding these two parameters to GUI rf():

bool use_seed[0] "set random seed"
int seed[0:2147483647:1234567]

Hooking it up

The function we just saw is registered in the
spec file for the package:

ui-maker = rf_ui_maker

It will then be called when the user selects the
menu item associated with GUI rf(), guiding
the GUI treatment of the parameters.

We’ll use an expanded signature in this case,
adding these two parameters to GUI rf():

bool use_seed[0] "set random seed"
int seed[0:2147483647:1234567]

Recap of the content of the bundle b returned
by the ui-maker function:

b["seed"] = _(depends="use_seed")
b["n_train"] = _(maximum=maxstr, default=defstr)
b["X"] = _(singleton=0, exclude="y", no_const=1)

singleton=0 require 2 or more series for list X
exclude="y" exclude the series selected as y
no const=1 and don’t allow inclusion of const

Could add more keywords besides those above:
suggestions?

R integration

First question: How much R integration do we
actually want?

How to call R from gretl?

▶ Call the R executable, or
▶ Call into the R shared library.

The first option is simpler; the second is more
efficient. Depends on loading certain R header
files at build time. We do this for our Windows
and macOS builds.

R integration

First question: How much R integration do we
actually want?

How to call R from gretl?

▶ Call the R executable, or
▶ Call into the R shared library.

The first option is simpler; the second is more
efficient. Depends on loading certain R header
files at build time. We do this for our Windows
and macOS builds.

R integration

First question: How much R integration do we
actually want?

How to call R from gretl?

▶ Call the R executable, or
▶ Call into the R shared library.

The first option is simpler; the second is more
efficient. Depends on loading certain R header
files at build time. We do this for our Windows
and macOS builds.

R functions

When we’re using the R shared library, we can
define and “install” R functions, and can then
call them as if they were hansl functions. Trivial
example from the Gretl User’s Guide:

set R_functions on
foreign language=R

plus_one <- function(q) {
z = q+1
invisible(z)

}
end foreign
scalar b=R.plus_one(2)

So what’s actually new?

There’s a new “special role” for a function
within a package, namely R-setup. For
example, in the spec file:

R-setup = rf_setup

This function should simply define one or more
R functions, within a gretl foreign block.

When such a package is loaded, its R-setup is
executed automatically. Subsequently, the R
function(s) can be called as if they were native.

Let’s look at an example. . .

So what’s actually new?

There’s a new “special role” for a function
within a package, namely R-setup. For
example, in the spec file:

R-setup = rf_setup

This function should simply define one or more
R functions, within a gretl foreign block.

When such a package is loaded, its R-setup is
executed automatically. Subsequently, the R
function(s) can be called as if they were native.

Let’s look at an example. . .

So what’s actually new?

There’s a new “special role” for a function
within a package, namely R-setup. For
example, in the spec file:

R-setup = rf_setup

This function should simply define one or more
R functions, within a gretl foreign block.

When such a package is loaded, its R-setup is
executed automatically. Subsequently, the R
function(s) can be called as if they were native.

Let’s look at an example. . .

So what’s actually new?

There’s a new “special role” for a function
within a package, namely R-setup. For
example, in the spec file:

R-setup = rf_setup

This function should simply define one or more
R functions, within a gretl foreign block.

When such a package is loaded, its R-setup is
executed automatically. Subsequently, the R
function(s) can be called as if they were native.

Let’s look at an example. . .

