Disentangling the geopolitical risk and its effects on commodities. Evidence from a panel of G8 countries

Matteo Foglia - Università degli Studi di Bari Giulio Palomba - Università Politecnica delle Marche Marco Tedeschi - Università Politecnica delle Marche

8th Gretl Conference. Gdańsk, Poland 15-16 June 2023 Introduction

Tuathail (1998a,b): GPR refers to the impact of political, economic, and social factors on the global and/or regional landscape.

GPR stems from international relations, trade disputes, and unforeseen events. It causes:

- disruptions in supply chains \rightarrow increase in prices;
- currency fluctuations \rightarrow speculation opportunities.

Monitoring GPR is important for policymakers and investors to reach the economic and financial stability.

Introduction

- The GPR influences financial markets behavior (Gkillas et al., 2018; Elsayed and Helmi, 2021);
- Guidolin and La Ferrara (2010): the outbreak of military conflicts influenced the financial markets behavior.
- The global GPR has been found to impact on:
 - equity markets (Elsayed and Helmi, 2021);
 - bond markets (Sohag et al., 2022);
 - currency markets (Bossman et al., 2023);
 - inflation (Caldara et al., 2023).
- Major events have shaken the past two decades:
 - the Global Financial Crisis (GFC) in September 2008;
 - the "Whatever it takes" speech in July 2012;
 - the Brexit referendum in June 2016;
 - the Covid-19 pandemic in March 2020;
 - the Russia-Ukraine conflict in February 2022,

Motivation

Ding et al. (2021); Gong and Xu (2022): the investigation of GPR shocks across countries is missing.

The global GPR impact the commodity sectors:

- energy (Cunado et al., 2020; Chowdhury et al., 2021);
- metals (Baur and Smales, 2020; Li et al., 2021);
- food (Hasan et al., 2022; Tiwari et al., 2021).

Motivation

Ding et al. (2021); Gong and Xu (2022): the investigation of GPR shocks across countries is missing.

The global GPR impact the commodity sectors:

- energy (Cunado et al., 2020; Chowdhury et al., 2021);
- metals (Baur and Smales, 2020; Li et al., 2021);
- food (Hasan et al., 2022; Tiwari et al., 2021).

The aim of the paper is to:

- analyze the GPR transmission across different countries in the last two decades;
- disentangle the impact of country-specific GPR on commodity market prices.

Data

- monthly data from Jan 2001 to Oct 2022 (T = 274);
- GPR indexes (Caldara et al., 2023);
- G8 countries:
- 13 log differences of commodity prices (list);
- 3 commodity sectors (energy, metals, food);

Data

- monthly data from Jan 2001 to Oct 2022 (T = 274);
- GPR indexes (Caldara et al., 2023);
- G8 countries:
- 13 log differences of commodity prices (list);
- 3 commodity sectors (energy, metals, food);

Methodology

- Time Varying Parameter VAR (TVPVAR) Koop and Korobilis (2013) and Antonakakis et al. (2020);
- Kalman filter;
- Generalized Impulse Response Functions (GIRFs);
- no window size is required;
- outlier sensitive estimated parameters;
- identification of GPR shocks over time;
- suitable model for low frequency data;
- the events that shook the last decade are accounted for.

Methodology

TVPVAR(p):

$$y_t = A_t x_{t-1} + \varepsilon_t \tag{1}$$

where $\varepsilon_t \sim N(0, \Omega_t)$ and

$$oldsymbol{A}_t = egin{bmatrix} oldsymbol{A}_{1t} & oldsymbol{A}_{2t} & oldsymbol{A}_{pt} \end{bmatrix} & ext{and} & oldsymbol{x}_{t-1} = egin{bmatrix} oldsymbol{y}_{t-2} \ dots \ oldsymbol{y}_{t-p} \end{bmatrix}. \ oldsymbol{y}_{t-p} \end{bmatrix}.$$

We assume:

$$\boldsymbol{a}_t = \boldsymbol{a}_{t-1} + \boldsymbol{\nu}_t, \tag{2}$$

where $\nu_t \sim N(\mathbf{0}, \Sigma_t)$ and $a_t = \text{vec}(A_t)$. We estimate a TVPVAR(1).

Kalman filter

- training set: from January 2001 to December 2007 $(T_0 = 96)$;
- test set: from January 2008 onward $(T_1 = 180)$;
- $T_0 + T_1 = T = 274$;
- starting parameters \boldsymbol{a}_0 , \boldsymbol{A}_0 , and $\boldsymbol{\Omega}_0 = T_0^{-1} \boldsymbol{E}_0' \boldsymbol{E}_0$;
- Initial conditions:

$$egin{array}{lcl} oldsymbol{A}_t | oldsymbol{\mathcal{I}}_{t-1} &=& oldsymbol{A}_{t-1} \ oldsymbol{arepsilon}_t | oldsymbol{\mathcal{I}}_{t-1} &=& oldsymbol{y}_t - oldsymbol{A}_{t-1} oldsymbol{x}_{t-1} \ oldsymbol{\Omega}_t | oldsymbol{\mathcal{I}}_{t-1} &=& \kappa_2 oldsymbol{\Omega}_{t-1} + (1 - \kappa_2) \left. rac{oldsymbol{arepsilon}_t oldsymbol{arepsilon}_t'}{T_0}
ight| oldsymbol{\mathcal{I}}_{t-1} \ oldsymbol{\Sigma}_t^* | oldsymbol{\mathcal{I}}_{t-1} &=& \kappa_1^{-1} oldsymbol{\Sigma}_{t-1} = k_1^{-t} oldsymbol{\Sigma}_0, \end{array}$$

where κ_1, κ_2 are decay factors (Koop and Korobilis, 2014).

Kalman filter

The multivariate Kalman filter proceeds via the following steps

$$\Omega_t = X'_{t-1}(\Sigma_t^* | \mathcal{I}_{t-1}) X_{t-1} + \kappa_2 \Omega_{t-1} + (1 - \kappa_2) \frac{\varepsilon_t \varepsilon_t'}{T_{t-1}}, \quad (3)$$

$$\boldsymbol{K}_{t} = (\boldsymbol{\Sigma}_{t}^{*} | \boldsymbol{\mathcal{I}}_{t-1}) \boldsymbol{X}_{t-1} \boldsymbol{\Omega}_{t}^{-1}, \tag{4}$$

$$\mathbf{a}_t = \mathbf{a}_{t-1} + \mathbf{K}_t(\boldsymbol{\varepsilon}_t | \mathbf{\mathcal{I}}_{t-1}),$$
 (5)

$$\boldsymbol{\varepsilon}_t = \boldsymbol{y}_t - \boldsymbol{A}_t \boldsymbol{x}_{t-1}, \tag{6}$$

$$\Sigma_t = (I_{n^2p} - C_t) \Sigma_t^* | \mathcal{I}_{t-1}, \tag{7}$$

where $C_t = K_t X'_{t-1}$, $X_{t-1} = x_{t-1} \otimes I_n$, I_n is the *n*-dimensional identity matrix.

Gretl code

Results

We provide:

- 80 GIRFs:
 - 56 GPR shock transmission across countries;
 - 24 GPR shock impact to commodity prices;
- 13 step-ahead horizons;
- country GPR shares on sectors commodity prices;

Results

We provide:

- 80 GIRFs:
 - 56 GPR shock transmission across countries:
 - 24 GPR shock impact to commodity prices;
- 13 step-ahead horizons;
- country GPR shares on sectors commodity prices:
- black line: Global Financial Crisis, September 2008;
- blue line: "Whatever it takes", July 2012;
- red line: Brexit, June 2016;
- green line: Covid-19, March 2020;
- gray line: Russia-Ukraine war, February 2022.

Russian GIRFs: highest magnitude in the Russia-Ukraine conflict case, in both directions.

A sudden GPR shock in Germany increase the GPR in other countries: leading role in Europe.

- The Canadian GPR shock significantly increases the UK and US GPR after two months (**Brexit period**): significant devaluation of the British pound (Nasir and Morgan, 2018).
- Shocks from other countries to Canada are quickly absorbed, meaning a low influences in the Canadian domestic situation (same behavior of Japanese GPR).

- The backlash in the UK and US GPRs is the more pronounced, especially for the **pandemic** and the war;
- The USA and Japan are considered relatively stable and safe economies, in comparison to the UK, therefore the domestic perceived GPR decrease.

GPR and energy sector

• 8 months to absorb shocks. Min/max around the 2 month;

Results

000000000

GPR and metals sector

GIRF magnitudes are generally lower than those of the energy sector. US, Russia, and Germany have the most relevant effects.

Results

GPR and food sector

GPR shares of countries

Introduction 000

Shares over time and aggregates

Economic Implications I

Concluding remarks:

- ongoing globalization of world markets;
- GPR transmission between G8 countries and that on commodity markets tends to be uneven;
- geographic proximity (North America and Europe) generally amplifies the mutual influence of GPR shocks;
- shocks from the Russian GPR have a more pronounced impact on European countries and the US (not viceversa);
- other factors, such as:
 - globalization (Sweidan and Elbargathi, 2022);
 - trade relationships (Gupta et al., 2019);
 - political and financial instability (Shahzad et al., 2023)

can contribute to transmitting GPR to commodity markets.

Economic Implications II

- the GPR increase generally reduce the energy prices. This result is attributable to the general contraction in demand (Assaf et al., 2021; Bossman et al., 2023);
- GPR shocks in Germany and Japan lead to higher energy prices: market speculation and commodities as safe-haven assets (Triki and Maatoug, 2021);
- our results could help policymakers and investors.

Thank you!

Any questions and/or suggestions? m.tedeschi@pm.univpm.it

References I

- Antonakakis, N., Chatziantoniou, I., and Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. *Journal of Risk and Financial Management*, 13(4):84–107.
- Assaf, A., Charif, H., and Mokni, K. (2021). Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter? *Resources Policy*, 72:1–19.
- Baur, D. and Smales, L. (2020). Hedging geopolitical risk with precious metals. *Journal of Banking & Finance*, 117:105823–105844.
- Bossman, A., Gubareva, M., and Teplova, T. (2023).

 Asymmetric effects of geopolitical risk on major currencies:
 Russia-ukraine tensions. *Finance Research Letters*, 51:1–8.

References II

- Caldara, D., Conlisk, S., Iacoviello, M., and Penn, M. (2023).
 Do geopolitical risks raise or lower inflation. Federal Reserve Board of Governors, Working Paper.
- Chowdhury, M. A. F., Meo, M. S., and Aloui, C. (2021). How world uncertainties and global pandemics destabilized food, energy and stock markets? fresh evidence from quantile on quantile regressions. *International Review of Financial Analysis*, 76:101759.
- Cunado, J., Gupta, R., Lau, C. K. M., and Sheng, X. (2020). Time-varying impact of geopolitical risks on oil prices. Defence and Peace Economics, 31(6):692–706.

References III

- Ding, Q., Huang, J., and Zhang, H. (2021). The time-varying effects of financial and geopolitical uncertainties on commodity market dynamics: A tvp-svar-sv analysis. *Resources Policy*, 72:1–16.
- Elsayed, A. and Helmi, M. H. (2021). Volatility transmission and spillover dynamics across financial markets: the role of geopolitical risk. *Annals of Operations Research*, 305(1-2):1–22.
- Gkillas, K., Gupta, R., and Wohar, M. (2018). Volatility jumps: The role of geopolitical risks. *Finance Research Letters*, 27:247–258.
- Gong, X. and Xu, J. (2022). Geopolitical risk and dynamic connectedness between commodity markets. *Energy Economics*, 110:1–15.

References IV

- Guidolin, M. and La Ferrara, E. (2010). The economic effects of violent conflict: Evidence from asset market reactions.

 Journal of Peace Research, 47(6):671–684.
- Gupta, R., Gozgor, G., Kaya, H., and Demir, E. (2019). Effects of geopolitical risks on trade flows: Evidence from the gravity model. *Eurasian Economic Review*, 9:515–530.
- Hasan, M. B., Hossain, M. N., Junttila, J., Uddin, G. S., and Rabbani, M. R. (2022). Do commodity assets hedge uncertainties? what we learn from the recent turbulence period? *Annals of Operations Research*, pages 1–34.
- Koop, G. and Korobilis, D. (2013). Large time-varying parameter vars. *Journal of Econometrics*, 177(2):185–198.
- Koop, G. and Korobilis, D. (2014). A new index of financial conditions. *European Economic Review*, 71:101–116.

References V

- Li, Y., Huang, J., and Chen, J. (2021). Dynamic spillovers of geopolitical risks and gold prices: New evidence from 18 emerging economies. *Resources Policy*, 70:1–14.
- Nasir, M. A. and Morgan, J. (2018). Pre-brexit: the eureferendum as an illustration of the effects of uncertainty on the sterling exchange rate. *Journal of economic studies*, 45(5):910–921.
- Shahzad, U., Mohammed, K. S., Tiwari, S., Nakonieczny, J., and Nesterowicz, R. (2023). Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from russia ukraine conflict perspective. *Resources Policy*, 80:1–11.

References VI

- Sohag, K., Hammoudeh, S., Elsayed, A., Mariev, O., and Safonova, Y. (2022). Do geopolitical events transmit opportunity or threat to green markets? decomposed measures of geopolitical risks. *Energy Economics*, 111:1–11.
- Sweidan, O. D. and Elbargathi, K. (2022). The effect of oil rent on economic development in saudi arabia: Comparing the role of globalization and the international geopolitical risk. *Resources Policy*, 75:1–9.
- Tiwari, A. K., Boachie, M. K., Suleman, M. T., and Gupta, R. (2021). Structure dependence between oil and agricultural commodities returns: The role of geopolitical risks. *Energy*, 219:1–13.

References VII

- Triki, M. B. and Maatoug, A. B. (2021). The gold market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk. Resources Policy, 70(101872):1-13.
- Tuathail, G. Ó. (1998a). Political geography iii: dealing with deterritorialization. Progress in Human Geography, 22(1):81-93.
- Tuathail, G. Ó. (1998b). Thinking critically about geopolitics. The geopolitics reader, 2:1–14.

Log Differences of Commodity prices

Gretl code: initialization

```
matrices A t mean = arrav(t)
matrices Omega t = arrav(t)
matrices Sigma t = array(t)
matrices Kalman t = array(t)
matrices C t = array(t)
matrix A pred = zeros(n^2,t)
matrix A update = zeros(n^2,t)
matrix Varepsilon t = zeros(n,n)
matrix A col = zeros(n^2*p.1)
matrix v = zeros(n.1)
loop for i = 1 .. t #Inizialization of arrays
    A t mean[i] = zeros(n.n*p)
    Omega t[i] = zeros(n,n*p)
    Sigma t[i] = zeros(n^2*p, n^2*p)
    C t[i] = zeros(n^2*p, n^2*p)
    Kalman t[i] = zeros(n^2*p, n)
endloop
# Inizialization of the variables. It means the starting point of the Kalman filter where t=1
Omega t[1] = Omega 0
Sigma t[1] = beta 0 var
A pred[,1] = beta 0 mean
matrix yy = x[(p+1):t,]
matrix xx = x[1:(t-p-1),]
```

Gretl code: main loop

```
loop for i = 2 ... (t-1)
    if i <= (p+1)
        A pred[,i] = A pred[,(i-1)]
        A update[,i] = A pred[,i]
        Sigma t[i] = Sigma t[(i-1)]
        Varepsilon t = x[i, l'x[i, l]]
        Omega t[i] = l 2*Omega t[(i-1)] + (1-l 2)*Varepsilon t
    elif i>(p+1)
        Varepsilon t = yy[(i-p),] - xx[(i-p),]*A t mean[(i-1)]
        SSR = Varepsilon t*Varepsilon t'
        Kron = x[i,] ** \overline{I}(n)
        Sigma t[i] = (1/l 4)*Sigma t[(i-1)]
        Omega t[i] = Kron*Sigma t[i]*Kron' + l 2*Omega t[(i-1)] + (1-l 2)*SSR
        Kalman t[i] = Sigma t[i]*(Kron'*inv(Omega t[i]))
        e hat = yy[(i-p),] - xx[(i-p),]*A t mean[i]
        A update[,i] = A pred[,i] + Kalman t[i]*e hat'
        C t[i] = Kalman t[i]*Kron
        Sigma t[i] = (I(n^2*p) - C t[i])*Sigma t[i]
        Omega t[i] = l \ 2*Omega \ t[i] + (1-l \ 2)*e hat*e hat'
    endif
    A col = decay factor*A update[,(i-1)]
    print
    A t mean[i] = mshape(A col, n, n*p)
    print i | x[i.]*A t mean[i]
endloop
```

Back to Methodology slide