Modeling financial time series with multiplicative errors

Giampiero M. Gallo

NYU in Florence and CRENoS

8th Gretl Conference – Gdańsk, Poland June 15, 2023

A bird's eye view on Multiplicative Error Models

- Focus on the evolution of this class of models
- Take the univariate MEM as a leading case of representation and inference issues
- How data structure suggests refinements
- Show a representation of a vector MEM
- Open issues (dimensionality, model selection, etc.)

From Conditional Variance to Conditional Means

In financial econometrics, returns as the main object of analysis.

- Financial volatility has been extensively investigated for more than twenty-five years
- Risk-related motivations
- Conditional density evaluation for VaR, ES
- Strong empirical regularities about GARCH models
- Ultra-high frequency data have allowed for more detailed analysis of market activity
- Clustering spreads over to other financial time series

Menu

000

Modeling non-negative time series: GARCH as a MEM

GARCH conditional variance is the expectation of squared returns (if zero mean return): autoregressive dynamics

- A lot of information available in financial markets is positive valued:
 - ultra-high frequency data provides intra-daily time intervals: range, volume, number of trades, number of buys/sells, durations)
 - daily volatility estimators (realized volatility, daily range, absolute returns)
- Time series exhibit persistence which can be modeled à la GARCH

Menu

Abs Returns

Autocorrelation 0.29

Daily Range – Parkinson (1980) $hl_t^P = \frac{1}{4 \log(2)} (\log H_t - \log L_T)$

Autocorrelation 0.59

Daily Range – Garman and Klass (1980) $(hl_t^{GK})^2 = 0.511 \log(H_t/L_t)^2 - 0.019 \{\log(C_t/O_t)(\log H_t + \log L_t - 2 \log O_t) - 2(\log(H_t/O_t) \log(L_t/O_t))\} - 0.383 \log(C_t/O_t)^2)$

Autocorrelation 0.67 – Correlation with Parkinson measure 0.96

Volume in million shares

Autocorrelation 0.58 - Correlation with daily range 0.51

Multiplicative Error Models

- Extension of the GARCH approach to modeling the expected value of processes with positive support (Engle, 2002; Engle and Gallo, 2006)
- Autoregressive Conditional Duration (Engle and Russell, 1998) is a special case. Absolute returns, high-low, number of trades in a certain interval, volume, realized volatility can be modeled with the same structure
- Rather than calling the models Autoregressive Conditional Volatility, Autoregressive Conditional Volume, etc. call them MEM
- Ease of estimation (more later)
- Expand the information set or introduce different components (main interesting results)

Consider

- \blacktriangleright *x_t*, a non–negative univariate process,
- ▶ \mathcal{F}_{t-1} the information about the process up to time t 1.

A MEM for x_t is specified as

 $x_t = \mu_t \varepsilon_t$

Consider

- \blacktriangleright *x_t*, a non–negative univariate process,
- ▶ \mathcal{F}_{t-1} the information about the process up to time t 1.

A MEM for x_t is specified as

 $x_t = \mu_t \varepsilon_t$

Consider

- \blacktriangleright *x_t*, a non–negative univariate process,
- ▶ \mathcal{F}_{t-1} the information about the process up to time t 1.

A MEM for x_t is specified as

 $x_t = \mu_t \varepsilon_t$

Consider

- ► *x*_t, a non–negative univariate process,
- ► \mathcal{F}_{t-1} the information about the process up to time t 1.
- A MEM for x_t is specified as

$$x_t = \mu_t \varepsilon_t$$

Conditional on \mathcal{F}_{t-1} : μ_t is a nonnegative *predictable* process, depending on a vector of unknown parameters θ ,

$$\mu_t = \mu_t(\boldsymbol{\theta});$$

Consider

- \blacktriangleright *x_t*, a non–negative univariate process,
- Figure \mathcal{F}_{t-1} the information about the process up to time t-1. A MEM for x_t is specified as

$$X_t = \mu_t \varepsilon_t$$

Conditional on \mathcal{F}_{t-1} : ε_t is a *conditionally stochastic* i.i.d. process, with density having non–negative support, mean 1 and unknown variance σ^2 ,

$$\varepsilon_t | \mathcal{F}_{t-1} \sim D(1, \sigma^2).$$

Consider

► *x*_t, a non–negative univariate process,

F \mathcal{F}_{t-1} the information about the process up to time t-1. A MEM for x_t is specified as

$$x_t = \mu_t \varepsilon_t$$

As a consequence

$$\begin{aligned} E(x_t | \mathcal{F}_{t-1}) &= \mu_t \\ V(x_t | \mathcal{F}_{t-1}) &= \sigma^2 \mu_t^2. \end{aligned}$$

The specification of μ_t

• Base (1, 1) specification for μ_t

$$\mu_t = \omega + \alpha \mathbf{x}_{t-1} + \beta \mu_{t-1},$$

Asymmetric (à la GJR) specification: if x_t can tap on info about r_t (e.g. hl_{t-1} can be associated with the observed sign of r_{t-1}):

$$\mu_t = \omega + \alpha \mathbf{x}_{t-1} + \gamma \mathbf{x}_{t-1}^{(-)} + \beta \mu_{t-1},$$

where $x_t^{(-)} = x_t I_{(r_t < 0)}$.

► Constant unconditional expectation $E(x_t) = \frac{\omega}{1-\alpha-\beta-\gamma/2}$

A Gamma Assumption for ε_t

Flexible parameterization

 $\varepsilon_t | \mathcal{F}_{t-1} \sim \textit{Gamma}(\phi, \phi),$

with $E(\varepsilon_t | \mathcal{F}_{t-1}) = 1$ and $V(\varepsilon_t | \mathcal{F}_{t-1}) = 1/\phi$.

As a consequence, $x_t | \mathcal{F}_{t-1} \sim \text{Gamma}(\phi, \phi/\mu_t)$.

A useful relationship is between the Gamma distribution and the Generalized Error Distribution (GED). We have:

$$x_t | \mathcal{F}_{t-1} \sim \textit{Gamma}(\phi, \phi/\mu_t) \Leftrightarrow x_t^{\phi} | \mathcal{F}_{t-1} \sim \textit{Half} - \textit{GED}(0, \mu_t^{\phi}, \phi).$$

The conditional densities of x_t and of x_t^{ϕ} are related. In particular, $\phi = 0.5$

$$\mathbf{x}_t = \mu_t \varepsilon_t \qquad \Leftrightarrow \qquad \sqrt{\mathbf{x}_t} = \sqrt{\mu_t} \nu_t$$

where

$$\nu_t | \mathcal{F}_{t-1} \sim Half - Normal(0, 1).$$

This will provide a *trick* to estimate a MEM with a standard GARCH package with normal innovations and Bollerslev–Wooldridge standard errors.

• Consider a MEM for squared returns r_t^2

$$r_t^2 = h_t \varepsilon_t$$

with $h_t = E(r_t^2 | \mathcal{F}_{t-1})$ estimated by a GARCH routine choosing r_t as the dependent variable, setting $E(r_t | \mathcal{F}_{t-1}) = 0$ with normal errors for the returns

- Numerically the same results choosing |r_t| as the dependent variable, setting (nonsensically) E(|r_t||F_{t-1}) = 0
- Hence, if *hl_t* is of interest, take √*hl_t* as the dependent variable, set its conditional mean to zero and normal errors: the GARCH results are the MEM estimation
- For GJR flavor recolor $\sqrt{hl_t}$ with the sign of returns $\sqrt{hl_t}(1 2 I_{r_t < 0})$

J&J

MFM

Frontiers

The poor person's guide to MEM estimation cont.d

The poor person's guide to MEM estimation cont.d

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
Listed as Variance Equation							
$\begin{array}{c} \text{Constant} \\ h_{t-1} \\ h_{t-1} \\ l_{r_{t-1} < 0} \\ h_{t-1} \end{array}$	0.622314 0.195050 0.052596 0.732919	0.080533 0.015805 0.009957 0.019955	7.727400 12.34083 5.282513 36.72779	0.0000 0.0000 0.0000 0.0000			

Contribution of x_t to the log–likelihood function I_t

$$I_t = \ln L_t = \phi \ln \phi - \ln \Gamma(\phi) + (\phi - 1) \ln x_t - \phi (\ln \mu_t + x_t/\mu_t).$$

Contribution of x_t to the score $\mathbf{s}_t = \begin{pmatrix} \mathbf{s}_{t,\theta} \\ \mathbf{s}_{t,\phi} \end{pmatrix}$ with components

$$\begin{split} \mathbf{s}_{t,\theta} &= \nabla_{\theta} I_t = \phi \left(\frac{\mathbf{x}_t - \mu_t}{\mu_t^2} \right) \nabla_{\theta} \mu_t \\ \mathbf{s}_{t,\phi} &= \nabla_{\phi} I_t = \ln \phi + 1 - \psi(\phi) + \ln \left(\frac{\mathbf{x}_t}{\mu_t} \right) - \frac{\mathbf{x}_t}{\mu_t}, \end{split}$$

where $\psi(\phi) = \frac{\Gamma'(\phi)}{\Gamma(\phi)}$ is the *digamma* function and the operator ∇_{λ} denotes the derivative with respect to λ .

Estimation – cont.d

Contribution of
$$x_t$$
 to the Hessian $\mathbf{H}_t = \begin{pmatrix} \mathbf{H}_{t,\theta\theta'} & \mathbf{H}_{t,\theta\phi} \\ \mathbf{H}'_{t,\theta\phi} & \mathbf{H}_{t,\phi\phi} \end{pmatrix}$ with components

$$\begin{split} \mathbf{H}_{t,\theta\theta'} &= \nabla_{\theta\theta'} \mathbf{I}_t = \phi \left(\frac{-2\mathbf{x}_t + \mu_t}{\mu_t^3} \nabla_{\theta} \mu_t \nabla_{\theta'} \mu_t + \frac{\mathbf{x}_t - \mu_t}{\mu_t^2} \nabla_{\theta\theta'} \mu_t \right) \\ \mathbf{H}_{t,\theta\phi} &= \nabla_{\theta\phi} \mathbf{I}_t = \frac{\mathbf{x}_t - \mu_t}{\mu_t^2} \nabla_{\theta} \mu_t \\ \mathbf{H}_{t,\phi\phi} &= \nabla_{\phi\phi} \mathbf{I}_t = \frac{1}{\phi} - \psi'(\phi), \end{split}$$

where $\psi'(\phi)$ is the *trigamma* function.

First order conditions for θ and ϕ

$$\frac{1}{T} \sum_{t=1}^{T} \frac{x_t - \mu_t}{\mu_t^2} \nabla_{\theta} \mu_t = 0$$
$$\ln \phi + 1 - \psi(\phi) + \frac{1}{T} \sum_{t=1}^{T} \left[\ln \left(\frac{x_t}{\mu_t} \right) - \frac{x_t}{\mu_t} \right] = 0$$

- First–order conditions for θ do not depend on φ, i.e. same point estimates for θ whatever value φ may take
- ϕ can be estimated after θ .
- If μ_t = E(x_t|F_{t-1}), the expected value of the score of θ evaluated at the true parameters is zero irrespective of the Gamma assumption on ε_t|F_{t-1}
- Estimator is QML

Asymptotic variance–covariance matrix

$$V_{\infty} = \begin{pmatrix} \phi \frac{1}{T} \sum_{t=1}^{T} \frac{1}{\mu_t^2} \nabla_{\theta} \mu_t \nabla_{\theta'} \mu_t & \mathbf{0} \\ \mathbf{0} & \psi'(\phi) - \frac{1}{\phi} \end{pmatrix}^{-1}$$

- The variance of $\hat{\theta}$ is proportional to $1/\phi$
- $\hat{\theta}$ and $\hat{\phi}$ asymptotically uncorrelated.
- With $v_t = x_t/\mu_t 1$, simple MoM estimator

$$\widehat{\phi^{-1}} = \frac{1}{T} \sum_{t=1}^{T} \widehat{v}_t^2.$$

not affected by the presence of zero x_t 's.

20/70

1

Asymptotic variance–covariance matrix - cont.d

The *sandwich* estimator gets rid of the dependence of the submatrix relative to θ on ϕ altogether

$$\widehat{V}_{\infty} = \widehat{\overline{\mathbf{H}}}_{T}^{-1} \widehat{\overline{\mathbf{OPG}}}_{T} \widehat{\overline{\mathbf{H}}}_{T}^{-1}$$

This is where the poor person's way to estimate a MEM for a single equation via a GARCH for the square root of the variable of interest, needs Bollerslev-Wooldridge standard errors.

Serious stuff: GMM estimation

In spite of QML properties, pursue more flexible GMM without an explicit choice of the error term distribution, based on

$$\varepsilon_t = \frac{\mathbf{x}_t}{\mu_t}$$

- ② Under model assumptions, $\varepsilon_t 1$ is a conditionally homoskedastic martingale difference, with conditional expectation zero and conditional variance σ^2 .
- The *efficient* GMM estimator of θ , say $\hat{\theta}_{GMM}$, solves the criterion equation

$$\sum_{t=1}^{T} (\varepsilon_t - 1) \boldsymbol{a}_t = \boldsymbol{0}, \quad \text{where } \boldsymbol{a}_t = \frac{1}{\mu_t} \nabla_{\boldsymbol{\theta}} \mu_t$$

GMM estimation – cont.d

• $\hat{\theta}_{GMM}$ has asymptotic variance matrix

Avar
$$(\widehat{\theta}_{GMM}) = \sigma^2 \mathbf{A}^{-1},$$

where

$$\boldsymbol{A} = \lim_{T \to \infty} \left[T^{-1} \sum_{t=1}^{T} E\left(\boldsymbol{a}_{t} \boldsymbol{a}_{t}^{\prime}\right) \right].$$

A consistent estimator of the asymptotic variance matrix is

$$\widehat{\operatorname{Avar}}(\widehat{\theta}_{GMM}) = \widehat{\sigma}^2 \widehat{\boldsymbol{A}}^{-1},$$

with relevant objects $\hat{\varepsilon}_t$ and $\hat{\boldsymbol{a}}_t$ evaluated at $\hat{\boldsymbol{\theta}}_{GMM}$

$$\widehat{\sigma}^2 = T^{-1} \sum_{t=1}^T (\widehat{\varepsilon}_t - 1)^2$$
 and $\widehat{\mathbf{A}} = T^{-1} \sum_{t=1}^T \widehat{\mathbf{a}}_t \widehat{\mathbf{a}}_t'$

An important equivalence between GMM and QML

MFM

Let
$$\varepsilon_t | \mathcal{F}_{t-1} \sim Gamma(\phi, \phi)$$
 (so that $E(\varepsilon_t | \mathcal{F}_{t-1}) = 1$ and $V(\varepsilon_t | \mathcal{F}_{t-1}) = \sigma^2 = 1/\phi$). The *log-likelihood* function is
$$I_T = \sum_{t=1}^T [\phi \ln \phi - \ln \Gamma(\phi) + \phi \ln \varepsilon_t - \phi \varepsilon_t - \ln x_t].$$

Maximization wrt θ involves just (ϕ is irrelevant)

$$\sum_{t=1}^{T} \left(\ln \varepsilon_t - \varepsilon_t \right).$$

The f.o.c. for θ is equal to the GMM condition

$$\sum_{t=1}^{T} \nabla_{\boldsymbol{\theta}} \mu_t \frac{\mathbf{x}_t - \mu_t}{\mu_t^2} = \sum_{t=1}^{T} (\varepsilon_t - 1) \mathbf{a}_t = \mathbf{0},$$

Under correct specification of μ_t the term has a zero expectation even when ε_t is not Gamma-distributed.

Giampiero M. Gallo

24 / 70

Univariate MEM à la carte

Univariate extensions

- Changing average level of volatility in MEMs
- MEMs to mitigate measurement error effects in volatility dynamics

Some stylized facts: the typical behavior of a volatility series

The Fear Index: the VIX

Some stylized facts: the typical behavior of a volatility series

The S&P500 Realized Kernel Volatility

Zoom	1m	3m	6m	YTD	1y	All	From	Oct 12, 2007	То	Jan 28, 2022

NYU 28 / 70

Approaches to modeling a low frequency component

Need to modify assumption of a constant unconditional (long range) volatility: idea of a local average which is time-varying

Additive model as in the Two–Component GARCH (Engle and Lee, 1999): a permanent (identified by high persistence) and a transitory one

$$h_{t} = q_{t} + \alpha(\epsilon_{t-1}^{2} - q_{t-1}) + \beta(h_{t-1} - q_{t-1})$$

$$q_{t} = \omega + \rho q_{t-1} + \phi(\epsilon_{t-1}^{2} - h_{t-1})$$

with $\rho > \alpha + \beta$ for identification of the permanent component (extension to MEM available).

- Multiplicative model: consider a combination of multiplicative components, one of which (\(\tau_t\)) corresponds to a slow moving average level of volatility.
- Conrad and Schienle (2018) devise an LM test for such an omitted multiplicative component

Conditional models for volatility on the boxing ring

On your right side, true GARCH for returns:

$$r_t = \sqrt{\tau_t h_t} \eta_t$$
 $E(r_t^2 | \mathcal{F}_{t-1}) = \tau_t h_t$

typically, $\eta_t \sim N(0, 1)$ or Student's t; r_t close–to–close log–returns; τ_t is the low–frequency component, h_t is the high–frequency component;

On your left side, true MEM for volatility-type:

$$\mathbf{x}_t = \mu_t \, \varepsilon_t = \tau_t \, \xi_t \, \epsilon_t \qquad \mathbf{E}(\mathbf{x}_t | \mathcal{F}_{t-1}) = \mu_t = \tau_t \, \xi_t$$

where $x_t = \sigma_t^2$, or σ_t , or $\log(\sigma_t^2)$; σ_t^2 can be one of the many realized variance measures, daily range (or other market activity measures), τ_t is the low–frequency component, ξ_t is the high–frequency component;

Insightful review paper in the GARCH world by Amado, Silvennoinen and Teräsvirta (2019)

- Curve fitting approach deterministic. Spline GARCH by Engle and Rangel (2008): goal to find macroeconomic determinants of volatility (ex post)
- Smooth Transition approach. Amado and Teräsvirta (2008): link *τ_t* to a logistic function
- Narkov Switching approach. Dueker (1997), Haas et al. (2004): average level of volatility by regime gives τ_t as a step function
- GARCH–MIDAS approach. Derive τ_t as a filter of past observations of data available at different frequencies

Parallel treatment of the Low-frequency Component in MEMs

- Markov Switching and Smooth Transition MEMs are suggested in a IJoF paper with E. Otranto (2015) introducing the concept of Local Average Volatility
- B-splines in a MEM are suggested by Brownlees and G. (2010)
- A common smooth factor extracted from a panel of realized volatilities is derived in Barigozzi et al. (2014)
- ▶ MEM–MIDAS suggested by Amendola *et al.*

Let's take a Brian De Palma's cut...

S&P 500 – in solid blue line $\hat{\tau}_t$ from a MEM–MIDAS

Frontiers

34 / 70

A different treatment of the low frequency component

S&P 500 - local average volatilities in a MS-AMEM(3)

The step function is the local average volatility calculated across three MS regimes. Annualized scale.

Component Models

Let $\{x_{i,t}\}$ refer to the *i*-th day $(i = 1, ..., N_t)$ of the period *t* (a week, a month or a quarter; t = 1, ..., T) with $\mathcal{F}_{i,t}$ be the information set available at day *i* of period *t*. Reparameterize the base MEM as

$$\mathbf{x}_{i,t} = \mu_{i,t} \epsilon_{i,t} = \tau \xi_{i,t} \epsilon_{i,t},$$

where: τ is a constant; $\xi_{i,t}$ is a quantity that, conditionally on $\mathcal{F}_{i-1,t}$, evolves deterministically; $\epsilon_{i,t}$ is an error term such that

$$\epsilon_{i,t} | \mathcal{F}i - 1, t \stackrel{iid}{\sim} \mathcal{D}(1, \sigma^2),$$
$$\mathcal{E}(\mathbf{x}_{i,t} | \mathcal{F}_{i-1,t}) = \tau \xi_{i,t} \qquad \quad \mathcal{V}ar(\mathbf{x}_{i,t} | \mathcal{F}_{i-1,t}) = \sigma^2 \tau^2 \xi_{i,t}^2.$$

Extension: Doubly Multiplicative Error Model

Recent joint work with A.Amendola, V.Candila and F.Cipollini

Specification for the conditional mean with a multiplicative component structure, with both factors time–varying.

 $\mathbf{x}_{i,t} = \tau_{i,t} \xi_{i,t} \varepsilon_{i,t}.$

- τ_{i,t} is the *long run* component: a *slow*-moving component determining the average *level* of the conditional mean at any given time. It may refer to a different frequency or not.
- ξ_{i,t} is the *short run* or *fast*-moving component: centered around one, with the role to dampen (when <) or to amplify τ_{i,t} (when > 1).

Doubly Multiplicative Error Model: short run

The short run component can be expressed as a MEM, augmented by the contribution of a predetermined de–meaned (vector) variable z within a DMEMX

$$\xi_{i,t} = (1 - \alpha_1 - \gamma_1/2 - \beta_1) + \alpha_1 x_{i-1,t}^{(\xi)} + \gamma_1 x_{i-1,t}^{(\xi-)} + \beta_1 \xi_{i-1,t} + \delta_1' \mathbf{z}_{i-1,t}$$

where

$$\mathbf{x}_{i,t}^{(\xi)} \equiv \frac{\mathbf{x}_{i,t}}{\tau_{i,t}} \qquad \mathbf{x}_{i,t}^{(\xi-)} \equiv \mathbf{x}_{i,t}^{(\xi)} \mathbb{1}_{(r_{i,t}<\mathbf{0})}.$$

 $x_{i,t}^{(\xi-)}$ is a variable derived from $x_{i,t}^{(\xi)}$ which takes a non-zero value only if it corresponds to a negative return (for asymmetric effects).

Doubly Multiplicative Error Model: long run

Specifications for $\tau_{i,t}$

- A first possibility is to adapt a spline function
- A second possibility is to structure *τ_{i,t}* in a way similar to *ξ_{i,t}*, namely

$$\tau_{i,t} = \omega^{(\tau)} + \alpha_1^{(\tau)} \boldsymbol{X}_{i-1,t}^{(\tau)} + \gamma_1^{(\tau)} \boldsymbol{X}_{i-1,t}^{(\tau-)} + \beta_1^{(\tau)} \tau_{i-1,t}$$

where

$$\mathbf{x}_{i,t}^{(\tau)} \equiv \frac{\mathbf{x}_{i,t}}{\xi_{i,t}}$$
 $\mathbf{x}_{i,t}^{(\tau-)} \equiv \mathbf{x}_{i,t}^{(\tau)} \mathbb{1}_{(r_{i,t}<\mathbf{0})}.$

we call this CMEM

How to assemble a MEM–MIDAS

• In the case of a mixed-frequency framework

$$\mathbf{x}_{i,t}|\mathcal{F}_{i-1,t} = \tau_t \,\xi_{i,t} \,\epsilon_{i,t} \qquad \varepsilon_{i,t} \stackrel{i.i.d}{\sim} \left(1, \frac{1}{\phi}\right)$$

$$\xi_{i,t} = (1 - \alpha - \beta - \gamma/2) + \left(\alpha + \gamma \cdot \mathbb{1}_{\binom{r_{i-1,t}}{\tau_t}} + \beta \xi_{i-1,t}\right) \frac{x_{i-1,t}}{\tau_t} + \beta \xi_{i-1,t}$$

• MIDAS filter

$$\tau_t = \exp\left\{ m + \vartheta \sum_{k=1}^K \delta_k(\omega) X_{t-k} \right\}$$
$$\delta_k(\omega) = \frac{(k/K)^{\omega_1 - 1} (1 - k/K)^{\omega_2 - 1}}{\sum_{j=1}^K (j/K)^{\omega_1 - 1} (1 - j/K)^{\omega_2 - 1}}$$

• GMM inference works as before

40 / 70

Spline MEM

Frontiers

Multiplicative errors mitigate measurement errors effects

Joint work with F.Cipollini and E.Otranto

- MEMs provide an alternative to the treatment by Bollerslev, Patton and Quaedvlieg (2016) for measurement error in realized volatility dynamics
- Problem: realized variance measures integrated variance of a continuous time process with error
- When specifying dynamic models for RV_t the estimated relationship less persistent than the "true" one (attenuation bias)
- Framework chosen: HAR enlarged to HARQ by including an interaction term between RV_t and realized quarticity

$$\mathbf{rv}_{t} = \omega + (\underbrace{\alpha_{D} + \alpha_{E} \mathbf{rq}_{t-1}^{1/2}}_{\alpha_{1,t-1}})\mathbf{rv}_{t-1} + \alpha_{W} \overline{\mathbf{rv}}_{t-(2:5)} + \alpha_{M} \overline{\mathbf{rv}}_{t-(6:22)} + u_{t}$$

Our take: measurement errors are multiplicative

- Stylized facts: (sqrt-)quarticity is strongly correlated with RealVar (in our panel, median = 0.934)
- If we insert squared RealVar in lieu of the interaction term we have similar results (significant negative coefficient)
- When analyzing the nature of the measurement errors, they are heteroskedastic

$$\begin{aligned} RV_t &= IV_t + \eta_t \\ &= IV_t + \sqrt{2\Delta}IQ_t^{1/2}z_t \\ &\approx IV_t + \sqrt{2\Delta}\delta IV_tz_t \\ &= IV_t \cdot (1 + \sqrt{2\Delta}\delta z_t) \\ &= IV_t \cdot \varepsilon_t. \end{aligned}$$

hence multiplicative errors

If that is the case

 $RV_{t} = \begin{cases} E(RV_{t}|I_{t-1}) + \eta_{t}, & \eta_{t} \text{ zero mean, heteroskedastic} \\ E(RV_{t}|I_{t-1}) \cdot \varepsilon_{t}, & \varepsilon_{t} \text{ unit mean, homoskedastic.} \end{cases}$

- ► Alternative explanation: lagged variance has a curvature effect within HAR → nonlinear effect which reduces persistence
- High levels of lagged RealVar imply a faster absorption of news and a faster reversion to the mean
- Fundamental Questions: Is this HAR a well specified model (are we rather catching heteroskedasticity à la White?, cf also Corsi, Mittnik, Pigorsch², 2008)
- Which mean to revert to? overall constant? or regime specific?

Comparison of robust AMEM Specifications of μ_t

AMEM(/Q/2)

J&J

$$\mu_{t} = \omega + \beta_{1}\mu_{t-1} + (\alpha_{1} + \alpha_{E}h_{t-1})rv_{t-1} + \gamma_{1}rv_{t-1}^{(-)}$$

$$\varepsilon_{t}|\mathcal{I}_{t-1} \sim Gamma(a, 1/a)$$

Frontiers

MS-AMEM(/Q/2) [Gallo and Otranto, 2015]

$$\mu_{t,s_{t}} = \omega_{s_{t}} + \beta_{s_{t}}\mu_{t-1,s_{t-1}} + (\alpha_{s_{t}} + \alpha_{E}h_{t-1})rv_{t-1} + \gamma_{s_{t}}rv_{t-1}^{(-)}$$

$$\varepsilon_{t}|s_{t}, \mathcal{I}_{t-1} \sim Gamma(a_{s_{t}}, 1/a_{s_{t}})$$

where $s_t \in \{1, 2, 3\}$ and $P(s_t = j | s_{t-1} = i) = p_{ij}$.

Different specifications depending on how h_t is defined:

•
$$h_t = \alpha_E \equiv 0 \rightarrow \text{AMEM}, \text{MS-AMEM}$$

- ▶ $h_t = rq_t^{1/2} \rightarrow AMEMQ, MS-AMEMQ$
- $h_t = rv_t \rightarrow AMEM2, MS-AMEM2$

Menu	0000	MEM	Frontiers	vMEM
000	J%J	00000000000000000000000000000000000	○○○○○○○○○○○○○○○○○○○○○	00000000000000000000000000000000000
Our conclusions				

- Evidence of curvature within HAR class of models could be attributed to alternative explanations (higher variances induce a faster mean reversion)
- but HAR being misspecified, a multiplicative specification (AMEM) takes heteroskedasticity into account and does not find a strong evidence for the extra terms
- A further refinement with Markov switching regime specific mean and short term dynamics eliminates the evidence of a curvature, with a substantial gain in predictive terms (in– and out–of–sample)
- Simulating from AMEM's without curvature provides estimated curvature effects in a HAR-type model.
- No need to pay money for the quarticity series: use MS-AMEM2 or AMEM2

The vector MEM

Extension to the multivariate case

Non-negative-valued processes taken together: several indicators of the same market activity OR same indicator (e.g. volatility) for different markets

The vector MEM

Consider

- ▶ \mathbf{x}_t , a non–negative univariate vector ($N \times 1$) process,
- Figure \mathcal{F}_{t-1} the information about the process up to time t-1. A MEM for \mathbf{x}_t is specified as

$$\mathbf{x}_t = \boldsymbol{\mu}_t \odot \boldsymbol{\varepsilon}_t$$

Conditional on \mathcal{F}_{t-1} :

• the components $\mu_{i,t}$ are *predictable* process, depending on a vector of unknown parameters θ ,

$$\mu_{i,t} = \mu_{i,t}(\boldsymbol{\theta});$$

► ε_t is a *conditionally stochastic* i.i.d. process, with density having non–negative support, mean 1 and unknown variance Σ^2 ,

$$\boldsymbol{\varepsilon}_t \mid \mathcal{F}_{t-1} \sim D(\mathbb{1}, \boldsymbol{\Sigma}^2).$$

50/70

vector MEM by Estimation Method

The vector Multiplicative Error Model

$$\mathbf{x}_t = \boldsymbol{\mu}_t \odot \boldsymbol{\varepsilon}_t = \operatorname{diag}(\boldsymbol{\mu}_t) \boldsymbol{\varepsilon}_t.$$

Conditionally on \mathcal{F}_{t-1} :

μ_t is a K- dimensional vector depending on a vector of parameters θ. Example:

$$\boldsymbol{\mu}_t = \boldsymbol{\omega} + \boldsymbol{lpha} \mathbf{X}_{t-1} + \boldsymbol{\gamma} \mathbf{X}_{t-1}^{(-)} + \boldsymbol{eta} \boldsymbol{\mu}_{t-1}$$

Equation by equation does not work if β is not diagonal

• ε_t is a iid multiplicative error term

$$arepsilon_t | \mathcal{F}_{t-1} \sim (\mathbb{1}, \mathbf{\Sigma})$$

The vector Multiplicative Error Model

From the definition:

$$egin{aligned} & \mathcal{E}(\mathbf{x}_t | \mathcal{F}_{t-1}) = oldsymbol{\mu}_t \ & \mathcal{V}(\mathbf{x}_t | \mathcal{F}_{t-1}) = oldsymbol{\mu}_t oldsymbol{\mu}_t' \odot oldsymbol{\Sigma} = ext{diag}(oldsymbol{\mu}_t) oldsymbol{\Sigma} ext{diag}(oldsymbol{\mu}_t) \end{aligned}$$

- θ is the parameter of main interest
- \triangleright **\Sigma** is a nuisance parameter

For forecasting, considering a second lag in the specification:

$$\boldsymbol{\mu}_{t+\tau} = \boldsymbol{\omega}^* + \mathbf{A}_1 \boldsymbol{\mu}_{t+\tau-1} + \mathbf{A}_2 \boldsymbol{\mu}_{t+\tau-2},$$

can be solved recursively for any horizon τ .

Impulse Response Analysis

From

$$\mathbf{hl}_{\mathbf{t}} = \boldsymbol{\mu}_{\mathbf{t}} \odot \boldsymbol{\epsilon}_{\mathbf{t}} \tag{2}$$

Interpret $\mu_{t+\tau} = E(\mathbf{h}\mathbf{I}_{t+\tau}|\mathbf{I}_t, \epsilon_t = 1)$ and contrast it with $\mu_{t+\tau}^{(i)} = E(\mathbf{h}\mathbf{I}_{t+\tau}|\mathbf{I}_t, \epsilon_t = 1 + \mathbf{s}^{(i)})$, for a generic vector of shocks $\mathbf{s}^{(i)}$.

The element–by–element division (\oslash) of the two vectors

$$\rho_{t,\tau}^{(i)} = (\mu_{t+\tau}^{(i)} \oslash \mu_{t+\tau}) - \mathbf{1} \quad \tau = 1, \dots, K$$
(3)

gives us the MEM impulse response function to a shock in a market.

Impulse Response to a shock in Hong Kong

Step 1: Let us define

$$\mathbf{u}_t = \mathbf{x}_t \oslash \boldsymbol{\mu}_t - \mathbb{1} = \boldsymbol{\varepsilon}_t - \mathbb{1}.$$

as an working residual. Hence

$$E(\mathbf{u}_t | \mathcal{F}_{t-1}) = \mathbf{0}$$
$$V(\mathbf{u}_t | \mathcal{F}_{t-1}) = \mathbf{\Sigma}$$

so that \mathbf{u}_t is a martingale difference.

Step 2:

Let \mathbf{G}_t an instrument, i.e. a (M, K)-matrix

- depending deterministically on \mathcal{F}_{t-1} ;
- (possibly) depending on a vector of nuisance parameters ψ, for the time being taken as fixed.

Then

$$E(\mathbf{G}_t\mathbf{u}_t|\mathcal{F}_{t-1}) = \mathbf{0} = E(\mathbf{G}_t\mathbf{u}_t)$$

and $\mathbf{g}_t = \mathbf{G}_t \mathbf{u}_t$ also is a martingale difference. This provides *M* moment conditions. If M = p, we have as many equations as the dimension of θ

Step 3: If M = p, we have the MM criterion

$$\frac{1}{T}\sum_{t=1}^{T}\mathbf{g}_t = \mathbf{0}$$

where $\boldsymbol{g}_t = \boldsymbol{G}_t \boldsymbol{u}_t$.

Main general results: (Wooldridge, 1994, th. 7.1, 7.2) Under correct specification of the μ_t equation, the GMM estimator $\hat{\theta}_T$, obtained by solving the moment conditions for θ , is consistent and asymptotically normal with asymptotic variance matrix

Avar
$$(\widehat{\theta}_T) = \frac{1}{T} \mathbf{S}^{-1} \mathbf{V} \mathbf{S}^{-1}',$$

where

$$\mathbf{S} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} E\left(\nabla_{\theta'} \mathbf{g}_t\right)$$
$$\mathbf{V} = \lim_{T \to \infty} \frac{1}{T} V\left(\sum_{t=1}^{T} \mathbf{g}_t\right)$$

Step 4:

Being $\mathbf{g}_t = \mathbf{G}_t \mathbf{u}_t$ a martingale difference leads to a simple formulation for the efficient choice of the instrument \mathbf{G}_t

$$\mathbf{G}_t^* = -E(\nabla_{\boldsymbol{\theta}} \mathbf{u}_t' | \mathcal{F}_{t-1}) V(\mathbf{u}_t | \mathcal{F}_{t-1})^{-1}.$$

Efficient is meant producing the 'smallest' asymptotic variance matrix among the GMM estimators obtained solving the moment conditions.

Step 5:

Computing the efficient instrument \mathbf{G}_t^* for the vMEM and plugging it into the moment conditions we obtain

$$\frac{1}{T}\sum_{t=1}^{T}\nabla_{\boldsymbol{\theta}}\boldsymbol{\mu}_{t}^{\prime}[\operatorname{diag}(\boldsymbol{\mu}_{t})\boldsymbol{\Sigma}\operatorname{diag}(\boldsymbol{\mu}_{t})]^{-1}(\mathbf{x}_{t}-\boldsymbol{\mu}_{t})=\mathbf{0}$$

together with a (relatively) simple expression of Avar($\hat{\theta}_T$).

Remarks:

- Identical inferences can be obtained by means of QML in a declination named Weighted Nonlinear Least Squares (WNLS) (Wooldridge, 1994)
- In the K = 1 case, the moment equation specializes as the 1-order condition of the univariate MEM under Gamma assumption of ε_t (Engle and Gallo, 2006)
- Main difference of the vector case: it is impossible to remove Σ from the moment equation. Hence, it is important to investigate its role in making inference about θ

Inference on Σ

- The nuisance parameter Σ is not fixed and has to be estimated. Are there consequences on inference for θ ?
- ▶ Omitting the details (rather technical!) the answer is...no.
- In practice, an inconsistent estimate of Σ does not affect consistency of θ_T.
- Since $\Sigma = V(\mathbf{u}_t | \mathcal{F}_{t-1})$, a natural estimator for Σ is

$$\widehat{\boldsymbol{\Sigma}}_{T} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{u}_{t} \mathbf{u}_{t}^{\prime}$$

where $\mathbf{u}_t = \mathbf{x}_t \oslash \boldsymbol{\mu}_t - \mathbb{1}$ is the working residual computed at current values of $\hat{\boldsymbol{\theta}}_T$.

Remark: this estimator is not compromised by zeros in the data.

Variable selection: a Lasso approach

- Put all coefficients of μ_t into a vector δ .
- The unrestricted model often contains zero parameters: inefficient parameter estimates, and poor forecasting performance
- The Adaptive Lasso selects the model and estimates the parameters simultaneously.
- Let $\hat{w}_j = 1/|\hat{\delta}_j(\textit{mle})|^{\xi}$ for some $\xi > 0$.

$$\hat{\delta}(\lambda_{T}) = \underset{\tilde{\delta}}{\operatorname{argmin}} \left\{ -\frac{1}{T} \ell(\tilde{\delta}) + \lambda_{T} \sum_{j=1}^{d} \hat{w}_{j} |\tilde{\delta}_{j}| \right\}.$$
(4)

- λ_T is selected with a cross validation approach.
- oracle property for Adaptive Lasso–vMEM: it is consistent in variable selection and performs as well as if the true underlying model were given in advance.

64 / 70

Network of interactions

The network of interactions across markets. Left: 2010-2012 Right: 2013-2015.

Open questions

- A low frequency component measures the secular movements of the volatility (local average concept)
- Statistically, it can be reproduced in a variety of ways:
 - Markov Switching has the appeal to allow for different dynamics and identify volatility regimes; possibility of a forcing variable in transition probabilities for interpretation
 - Smooth transition introduces the persistence in the component and possibility of a forcing variable for interpretation
 - Deterministic exploits the *fitting* capabilities
 - MIDAS is built on a forcing variable with more suitable lower frequency as the volatility component

Open questions

- Economic interpretability with transmission mechanisms from the real economy (try housing starts)
- Which monthly variable? credit spread, realized volatility
- Refinements on the MEM-MIDAS insert double asymmetry in the MIDAS component
- Common component to different markets what is left out? multivariate version?
- Different drivers combined additively in τ_t ?
- Cascading components combined multiplicatively
- Horse race with other τ_t specifications

- MEM as a flexible class of models to estimate conditional expectations of non-negative processes both univariate (with extra predetermined variables) and multivariate
- Doubly multiplicative model captures a wide range of features suggested by data structure
- Challenge: handle large panel of data/impose common component structure for a more parsimonious/more tractable specification

Estimation reasonably simple in a GMM framework Needs a major econometric software to implement it

Thank You!

Giampiero M. Gallo