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Introduction

• Bayesian Model Averaging (BMA) as a response to model
uncertainty

• Substantial field in statistics and many areas of application
(economics, biology, ecology, sociology, meteorology,
psychology and hydrology)

• Methodology and key operational aspects

• Application in economics (do institutions drive economic
growth?)

• Publicly available software (some in gretl)

• Some recommendations and open questions
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Model uncertainty

Model uncertainty is an inherent part of modelling, especially in
the social sciences. Ignore this at your peril!

Two main strategies for dealing with model uncertainty:

• Model selection: choose “best” model and then conduct
inference conditionally upon the assumption that this model
actually generated the data. Only works well if model selected
is (a really good approximation to) the data generating
process. Otherwise it will miss important aspects of reality
and inference will be systematically wrong or overly precise

• Model averaging: our inference is averaged over all the
models in the model space considered, using weights that are
either derived from Bayes’ theorem (BMA) or from
sampling-theoretic optimality considerations (FMA). Here
focus on BMA
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BMA

In line with probability theory, the formal Bayesian response to
dealing with uncertainty is to average

E.g. wish to predict the unobserved yf on the basis of the observed
y . Sampling model for yf and y jointly is
p(yf |y , θj ,Mj)p(y |θj ,Mj), where Mj is the model selected from K
possible models, and θj ∈ Θj are the parameters of Mj .
Assign a (continuous) prior p(θj |Mj) for the parameters and a
discrete prior P(Mj) on the model space. Predictive distribution is

p(yf |y) =
K∑
j=1

[∫
Θj

p(yf |y , θj ,Mj)p(θj |y ,Mj)dθj

]
P(Mj |y) (1)

Averaging at two levels: over parameter values, given each possible
model, and discrete averaging over all possible models
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BMA
Square brackets in (1): predictive given Mj obtained using the
posterior of θj given Mj , which is

p(θj |y ,Mj) =
p(y |θj ,Mj)p(θj |Mj)∫

Θj
p(y |θj ,Mj)p(θj |Mj)dθj

≡
p(y |θj ,Mj)p(θj |Mj)

p(y |Mj)
,

(2)

with the second equality defining p(y |Mj), used in computing the
posterior probability of Mj :

P(Mj |y) =
p(y |Mj)P(Mj)∑K
i=1 p(y |Mi )P(Mi )

≡
p(y |Mj)P(Mj)

p(y)
. (3)

Denominators of both averaging operations are made explicit in (2)
and (3). p(y |Mj) in (2) is the marginal likelihood of Mj and is a
key quantity: Bayes factor is the ratio of marginal likelihoods
(posterior odds = Bayes factor ∗ prior odds). p(y) in (3) is a sum
(challenge often lies in the number of models K ).
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BMA

More generally, the posterior distribution of any quantity of
interest, say ∆, which has a common interpretation across models
is a mixture of the model-specific posteriors with the posterior
model probabilities as weights, i.e.

P∆|y =
K∑
j=1

P∆ | y ,Mj
P(Mj | y). (4)

Growing importance of model averaging as a solution to model
uncertainty is illustrated by Figure 1, which plots the citation
profile over time in the literature. The figure also indicates
influential papers (with 250 citations or more) published in either
economics or statistics journals
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BMA

Figure: Total number of citations to papers with topic “model averaging” over
years 1989-2018. Papers in economics or statistics journals with at least 250
citations are indicated by vertical lines proportional to the number of citations
received. Source: Web of Science, Jan. 29, 2019.
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Construction of the Model Space

Need to define M, the space of all possible models

Three main sources of uncertainty:

• Theory: which variables are important drivers? Often, theories
regarding variable inclusion do not contradict each other
(“open-endedness” of the theory)

• Specification: functional form, distributions, lag lengths,
proxies for theoretical variables

• Heterogeneity : same model for all observations?

M should be as broad as possible: you can not learn about
anything outside of it! Size is not really an issue.

Usually theoretical results are derived under the assumption that
M contains the “true” data-generating model (“M-closed”), but
most important results like model selection consistency extend to
“M-open” settings in an intuitive manner.
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Covariate uncertainty in normal linear regression

Most common setting: model uncertainty about which covariates
to include, i.e. under model j the n obs. in y are generated from

y |θj ,Mj ∼ N(αι+ Zjβj , σ
2). (5)

Here ι is a vector of ones, Zj groups kj of the possible k regressors
and βj ∈ <kj are the regression coefficients. All models contain an
intercept α ∈ < and a scale σ > 0 with a common interpretation.

We standardize the regressors by subtracting their means, which
makes them orthogonal to the intercept and makes the
interpretation of the intercept common to all models. Assume
n > k and design matrix has full column rank

M: all subsets of the covariates and thus contains K = 2k models

Economics: k up to 100 (growth), so K > 1030 and need efficient
computational tools. Genetics (usually n << k): k could be up to
100,000, leading to K > 1030,000!
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BMA: Prior structures

Most commonly used structure is by Fernández et al. (2001)

Prior on model parameters:

p(α, βj , σ |Mj) ∝ σ−1f
kj
N (βj |0, σ2g(Z ′jZj)

−1), (6)

which is a “g -prior” and leads to closed form for integral in (1) and
the marginal likelihood (likelihood integrated out with the prior).

Prior over models:

P(Mj) = wkj (1− w)k−kj , (7)

so that covariates are a priori included independently and with
probability w .

Only requires choice of two scalars g and w : hyperpriors are
recommended (adaptive and more robust)
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BMA: Properties

BMA has a number of attractive properties for popular choices of
(priors on) g ,w :

• model selection consistency: if data have been generated by
Mj , then the posterior probability of Mj converges to 1 with n
(or to the “closest” model in M if we consider M-open
setting)

• BMA predicts at least as well as any single model (assuming
data is generated by (1)) and there is ample empirical
evidence for clear superiority (probabilistic forecasts)
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Numerical methods for large model spaces

Markov chain Monte Carlo methods on model space only (rest is
integrated out with prior in (6))

MC3 is a random-walk Metropolis-Hastings algorithm which
suggests proposals in a neighbourhood of the current model and
accepts with a certain probability to ensure that draws converge to
the correct posterior

MC3 is implemented in freely available software and has been
shown to work very well

More challenging cases such as with very correlated regressors
and/or k >> 100 might need adaptive samplers (tuning as the
chain is being generated): some have been shown to work well for
k in order of 10, 000s.

So no need to avoid using large M!
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Role of the prior

Effect of the prior on posterior model probabilities can be much
more pronounced than on posterior inference given a model

Posterior odds between models, given g and w :

P(Mi | y ,w , g)

P(Mj | y ,w , g)
=

(
w

1− w

)ki−kj
(1+g)

kj−ki
2

(
1 + g(1− R2

i )

1 + g(1− R2
j )

)− n−1
2

(8)
The three factors correspond to a model size penalty induced by
the prior on the model space, a model size penalty resulting from
the marginal likelihood and a lack-of-fit penalty from the marginal
likelihood.

Hyperpriors on g and w can have a large effect on the induced
penalties for model complexity but not on the impact of the
relative fit of the models
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Hyperpriors on g and w can have a large effect on the induced
penalties for model complexity but not on the impact of the
relative fit of the models
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Figure: Posterior odds as a function of kj when ki = 10 with equal fit, using
prior mean model size m = 7 (solid), m = k/2 (dashed), and m = 2k/3
(dotted). Bold lines correspond to random w and g

Hyperpriors more robust to m, less extreme and penalize models of
size around k/2 (multiplicity penalty)
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Approximations and hybrids

Closed-form marginal likelihood may not be available with other
model structures (different sampling models, like Student-t, GLMs;
different priors). Formally correct approach is to include model
parameters in the MCMC, but this may be cumbersome

In regular models BIC tends to log Bayes factor with n; so BIC
often used as (easy) approximation in more complex settings

Hybrids of frequentist and Bayesian methods were used e.g. to deal
with endogenous regressors: BIC approximations to posterior
model probabilities for averaging over classical two-stage least
squares (2SLS) estimates.
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Other sampling models

BMA for many other models has been considered:

• Generalized linear models (GLMs), for example logistic, probit
or ordered response models

• Generalized additive models (nonlinear effects)

• Models for outliers and non-normal models (e.g. Student-t)

• Dynamic models, e.g. AR(F)IMA and DLMs

• Models with endogenous regressors (IV models)

• Models for longitudinal data with individual effects

• Models for spatial data (Spatial AR models)

• Duration models
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Endogeneity

Endogeneity occurs if one or more of the covariates is correlated
with the error term in the equation corresponding to (5). In
particular, consider the following extension of the model in (5):

y = αι+ xγ + Zjβj + ε (9)

x = W δ + ν, (10)

where x is an endogenous regressor and W is a set of instruments,
independent of ε. The error terms are iid:

(εi , νi )
′ ∼ N(0,Σ), (11)

with Σ = (σij) a 2× 2 covariance matrix. Whenever σ12 6= 0 this
introduces a bias in the OLS estimator of γ and a standard
classical approach is the use of 2SLS estimators instead.
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BMA with Endogeneity
Posterior inference on coefficients and model probabilities is
affected, even for large n.

Durlauf et al. (2008) focus on uncertainty in the selection of the
endogenous and exogenous variables and propose to average over
2SLS model-specific estimates with BIC-based weights.

Lenkoski et al. (2014) also account for model uncertainty in the
selection of instruments. They propose a two-step procedure that
first averages across the first-stage models (for the endogenous
variables) and then, given the fitted endogenous regressors from
the first stage, it again takes averages in the second stage. Both
steps use BIC weights (approximations).

Karl and Lenkoski (2012) propose IVBMA, which uses conditional
Bayes factors to account for model uncertainty within a Gibbs
algorithm. Their algorithm hinges on certain restrictions (e.g. joint
Normality and conditionally conjugate priors), but it is exact,
efficient and is implemented in an R-package.
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Application in Economics
Lenkoski et al. (2014). Econometric Reviews

Three main theories about what drives economic growth:
geography (natural and human resources), international trade
(linked with market integration) and institutions (property rights
and the rule of law)

Many ways in which these theoretical determinants could be
measured, so a large collection of possible models

Only geography can be safely assumed to be exogenous.

In previous literature some (influential) studies found evidence that
property rights are a strong driver for growth, but without
considering many alternative models. Similarly, others concluded
that trade variables were key drivers (without controlling for the
effect of institutions). Rodrik et al. (2004) (RST) provide a “horse
race” among alternative theories that propose candidate
instruments and regressors, but don’t use BMA (they just compare
a limited set of models) and conclude only institutions matter
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Application in Economics
Lenkoski et al. (2014). Econometric Reviews

Consider e.g. Rule of Law and Integration (Openness):

Rule of Law Integration

Models PIP mean sd PIP mean sd

RST core 1.00 1.28 0.18 0.20 0.11 0.26
limited M 1.00 0.95 0.13 0.07 0.07 0.14
full M 0.96 0.80 0.32 0.85 0.93 0.38

Table: Some BMA (2nd stage) results with different sets of possible
covariates (PIP is posterior inclusion probability)

Divergence of results (between 2SLS and BMA) grows as we allow
for more uncertainty (bigger model spaces). Integration becomes
important driver and all three theories are supported in the BMA
results using all available variables.
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Software and resources

A number of free R-packages: BMS, BAS, BayesVarSel, ivbma
(endogenous regressors)

Packages for “standard” normal linear model all tend to be efficient
and accurate, leading to reliable inference within 10 minutes on a
simple PC for problems up to k = 100 or so covariates

Some useful resources available online, e.g.
http://bms.zeugner.eu/resources/ (also introductory
material)

B lazejowski and Kwiatkowski (2015, 2018) present packages that
implement BMA (including jointness measures) and BACE
(amounts to BMA with a particular implicit choice of g) in gretl
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Conclusion
• Model uncertainty is a pervasive problem in applications

• Simply ignoring the problem is not a solution (biased and
overconfident inference)

• BMA presents a formal solution, which optimally takes into
account uncertainty, within model space

• Priors matter for BMA and it is crucial to be aware of this
• this needs to be understood and properly communicated
• “robustify” priors through hyperpriors on e.g w and g
• elicited through intuitive quantities, e.g. prior mean model size

• Lots of unexplored areas especially outside of the normal
linear model (prior structures, elicitation and effects;
properties; computation)

• BMA can become a key methodology in many areas of
application, and can contribute to constructive
communication by better understanding the reasons for
differences in empirical findings
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