An econometric analysis of entrepreneurship determinants in Polish voivodeships in the years 2004-2013

Tomasz Groszkowski Tomasz Stryjewski

Berlin 11-12 June 2015

Our questions at the beginning of the analysis

- We all know the importance of companies in the economy - they are an essential element and driving force in the economy.
- The question is: what forces cause the enterprenuership's dynamics and diversity over the regions?
- The next question is: what is the nature of these regional differences?

Base characteristics of the analysis

- The goal to find out the factor which determine the level of the Enterprenuership Indicator in Poland and to find out reasons of its distribution over the regions
- Sample annual data form 2003 to 2013 for 16 regions
- Small sample limits the range of possible econometric analysis (degrees of freedom) to AR(1) model with linear trend

wskpz by group

The methodology

- We use panel models with particular emphasis on FE / RE class of models
- Because the dependent variable was highly autocorrelated we considered two models:
 - Autoregressive panel models
 - Model with instrumental variable as the lagged dependent variable

Partial results

- After verification both models proved to be similar.
- However, the test to autoregressive panel model showed no spatial differentiation.
- In our view, it is inconsistent with the observation of the Polish economy.
- To further study was used model with an instrumental variable.

The first part of analysis

- In the first step we searched instrumental variable among similar economic variables
- This search yielded no results
- In the next step we decided to create a instrumental variable in accordance with the model (dynamic panel models):

$$y_{it} = \alpha_0 + \alpha_1 y_{i,t-1} + \alpha_2 y_{i,t-2} + \alpha_3 t + \eta_{it}$$

Model for instrumental variable – empirical results

Dependent variable: wskpz

	Coefficient	Std. Error	Ζ	p-value	
wskpz(-1)	0.983455	0.0384516	25.5764	< 0.00001	***
const	1.47559	5.04465	0.2925	0.76990	
time	0.453335	0.112804	4.0188	0.00006	***

The second part of analysis

- In the next step of analysis a panel model for Entrepreneurship Index contains the lagged instrumental variable has been estimated
- Generally, the model has good characteristics concerning the autocorrelation of residuals

Panel Data Model

Dependent variable: wskpz

	Coefficient	Std. Error	t-ratio	p-value	
const	4.65273	3.59303	1.2949	0.19779	
urbanizacja	-16.5172	4.61591	-3.5783	0.00050	***
turyst_1	0.0624735	0.030029	2.0804	0.03958	**
doch per capita	0.00904603	0.0018206	4.9687	< 0.00001	***
time	-0.433895	0.193242	-2.2453	0.02655	**
yhat17_1	0.9631	0.0297482	32.3751	< 0.00001	***
R-squared	0.9823	392 Ad	ljusted R-squa	red 0.981	671

rho 0.369602 Durbin-Watson 1.085559

Panel model diagnostics

F test statistic (Fixed effect)				
the null hypothesis that the				
pooled OLS model	E(1E, 107) = 2.62019	n value = 0.00206261		
is adequate, in favor of the	F(15, 107) – 2.02918	p-value – 0.00200201		
fixed effects alternative				
Breusch-Pagan test statistic (Random effect)				
the null hypothesis that the				
pooled OLS model		$p_{value} = prob(chi_square(1))$		
	LM = 1.77137			
is adequate, in favor of the		1.//13/) = 0.183213		
random effects alternative				
Hausman test statistic				
the null hypothesis that the				
random effects		$p_{\rm value} = prob(chi_{\rm square}(5))$		
	H = 14.5289	p-value – p obj(chi-square(5) >		
model is consistent, in favor of		14.5289) = 0.0125771		
the fixed effects model				

Because of the panel data model with fixed effects contained irrelevant independend variables we decided to reestimate this model whit use of the LSDV estimator

Empirical results of fixed effect panel model estimated by LSDV

Dependent variable: wskpz

	Coefficient	Std. Error	t-ratio	p-value	
const	31.9812	9.33634	3.4255	0.00086	***
dochodymieszk	0.00906773	0.0016615	7 5.4573	< 0.00001	***
yhat17_1	0.700387	0.0728127	9.6190	<0.00001	***
LSDV R-squared	0.9868	330 W	ithin R-squared	l 0.742	2696
LSDV F(17, 110)	484.84	430 P-	-value(F)	4.796	e-95
rho	0.2741	51 D	urbin-Watson	1.193	3454

Conclusions

The examination of Entrepreneurial activities through the index allow drawing three main conclusions:

- The problem of entrepreneurship development in Poland is a structural problem.
- Identified determinants of the entrepreneurship index in the researched period are:
 - > municipal revenues per capita
 - entrepreneurship index in the previous period
- Entrepreneurship Index (The number of enterprises per 1,000 people of working age) is it a good variable?

Thank You for Your attention