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Introduction

Dynamic binary panel data models

Non-linear dynamic models for binary dependent variables are

becoming essential in microeconometrics, especially given the

increasing availability of panel datasets; examples:

female labor supply, fertility choices, self-assessed health condition, poverty

traps, remittance decisions by migrants, access to credit

Static models are relatively mainstream and are supported by most

statistical and econometric software

Dynamic models are more complex to implement and estimation

routines are not always readily available to the practitioner
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Introduction

Main issues

Consider the model

y∗it = γyit−1 + x′itβ + αi + εit

yit = 1{y∗it ≥ 0} for i = 1, . . . , n t = 2, . . . ,T

Heckman (1981a): given the observable characteristics xit , it’s

important to separate:

true state dependence: how experiencing an event in the present

affects the probability of that same event occurring in the future

permanent unobserved heterogeneity: propensity to experience that

same event at all times

Dealing with unobserved heterogeneity raises the initial conditions

problem: αi is correlated with the initial observation.
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Introduction

Estimation approaches

Random-effects approaches: modelling the joint distribution of the
outcomes conditional on y1

Heckman (1981b): models yi1|αi via a separate approximate

reduced-form model

Wooldridge (2005): models αi |yi1 via the history of strictly exogenous

covariates

Fixed-effects approaches for fixed T : condition the joint distribution
of yi on a suitable sufficient statistic for αi , which exists

in absence of covariates with T = 3 (Chamberlain, 1985);

with covariates on the basis of a weighted conditional log-likelihood

(Honorè and Kyriazidou, 2000). Convergence slower than
√

n

in a Quadratic Exponential model (Bartolucci and Nigro, 2010).
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Introduction

Estimators implemented in DPB

Dynamic Probit (DP) proposed by Heckman (1981b)

AR1 Dynamic Probit (ADP) proposed by Hyslop (1999) building on

the DP model

Generalised AR1 Dynamic Probit (GADP) proposed by Keane and

Sauer (2009) building on the DP and ADP model

Quadratic Exponential (QE) proposed by Bartolucci and Nigro (2010)

Wooldridge’s estimator can be implemented with the built-in command

probit depvar wool indepvars --random-effects
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The DPB function package Random-effects estimators

Dynamic probit model

In the DP model (Heckman, 1981b), for i = 1, . . . , n

yit = 1{γyit−1 + x′itβ + αi + εit ≥ 0} for t = 2, . . . ,T

yi1 = 1{z′i1π + θαi + εi1 ≥ 0}

yit : binary response variable; xit : individual characteristics;

E [εit |Xi , αi ] = 0; E [αi |Xi ] = 0

[θαi + εi1, αi + εi2, . . . , αi + εiT ]′ ∼ N (0; Σ); V (αi ) = σ2
α; V (εit) = 1

Σ =


1 + θ2σ2

α θσ2
α θσ2

α . . .

θσ2
α 1 + σ2

α σ2
α . . .

θσ2
α σ2

α 1 + σ2
α . . .

...
...

...
...
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The DPB function package Random-effects estimators

Dynamic Probit model — ML estimation

Under the above premises, the parameter vector ψ =
[
β′, γ,π′, θ, σα

]
can

be estimated by ML.

The contribution to the likelihood by unit i is:

Li (ψ) =

∫
R

{
Φ [(z′i1π + θαi )(2yi1 − 1)]×

T∏
t=2

Φ [(γyit−1 + x′itβ + αi )(2yit − 1)]
}
dΦ

(
αi

σα

)

where Φ(·) is the standard normal c.d.f. The integral over αi can be

evaluated numerically by Gauss-Hermite quadrature (Butler and Moffitt,

1982).
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The DPB function package Random-effects estimators

In practice. . . a simple hansl script

1 Include the function package and load your dataset (setting up the

panel structure if necessary)

include DPB.gfn

open DP artdata.gdtb

setobs id time --panel-vars

2 Create two lists: one for the main equation and one for the initial

condition

list X = const x

list Z = const x z

3 Call the package public functions to set up the model, estimate the

parameters and print the output:

bundle b = DPB setup("DP",y,X,Z)

DPB estimate(&b)

DPB printout(&b)
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The DPB function package Random-effects estimators

Handling options

You can use the public function DPB setoption to change the default:

number of quadrature points:

err = DPB setoption(&b, "nrep", 32)

default is 24

estimator of the covariance matrix:

err = DPB setoption(&b, "vcv", 1)

0 Sandwich (default), 1 OPG, 2 Hessian

verbosity level:

err = DPB setoption(&b, "verbose", 2)

1 log-lik at each iteration (default), 0 no output, 2 verbose mle
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The DPB function package Random-effects estimators

Gauss-Hermite quadrature in gretl

To compute the probability for the DP log-likelihood, we use the built in

function quadtable()

matrix h = quadtable(quadpoints, 1, 0, 1)

matrix alphas = h[,1] .* sig a

scalar LL i = p * h[,2]

quadtable() is more general than Gauss-Hermite (GaussLegendre

and GaussLaguerre also available)

In principle, not impossible to write analytical derivatives in hansl

(advantages not certain, however; see Rabe-Hesketh et al. (2002))

Possible margins for improvement: parallelization, adaptive GHQ
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The DPB function package Random-effects estimators

AR1 Dynamic Probit model

Hyslop (1999) generalised the DP model to accommodate autocorrelated

errors. For t = 2, . . . ,T ,

εit = ρεit−1 + ηit

|ρ| ≤ 1, ηit ∼ N(0, 1− ρ2)

The variance-covariance matrix of the errors becomes:

Σ =


1 + θ2σ2

α ρ+ θσ2
α ρ2 + θσ2

α . . .

ρ+ θσ2
α 1 + σ2

α ρ+ σ2
α . . .

ρ2 + θσ2
α ρ+ σ2

α 1 + σ2
α . . .

...
...

...
...


Note that the ADP reduces to the DP model for ρ = 0.
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The DPB function package Random-effects estimators

Generalised AR1 Dynamic Probit model

More general version of Σ by Keane and Sauer (2009). The initial

condition becomes

yi1 = 1{z′i1π + θαi + ui ≥ 0},

with −1 < τ = E (ui · εi2) ≤ 1, since V (ui ) = V (εit) = 1 for identification,

so

Σ =


1 + θ2σ2

α τρ+ θσ2
α τρ2 + θσ2

α . . .

τρ+ θσ2
α 1 + σ2

α ρ+ σ2
α . . .

τρ2 + θσ2
α ρ+ σ2

α 1 + σ2
α . . .

...
...

...
. . .


The GADP reduces to the ADP model for τ = 1 and to the DP for ρ = 0.

Nice, but possibly very weakly identified.
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The DPB function package Random-effects estimators

Likelihood for ADP and GADP models

The specification of εit as an AR(1) process makes it impossible to

integrate out the random effect αi via quadrature;

in order to compute the likelihood, T -variate normal probabilities

must be evaluated by simulation via the GHK algorithm:

L ∗
i (ψ) =

1

R

R∑
r=1

Φ∗Tr (ai ,bi ,C)

where

ai and bi , are the integration limits (possibly nonfinite)

C = cholesky(Σ) in the ADP or GADP models

r is the number of random draws in the simulation.

Lucchetti-Pigini The DPB function package GC 2015 13 / 25



The DPB function package Random-effects estimators

The GHK algorithm in gretl

The Geweke (1989), Hajivassiliou and McFadden (1998), and Keane

(1994) algorithm, is computed by the internally parallelized built-in

function ghk()

scalar inf = $huge

U = halton(TT, nrep)

Y = Y0 | Y1

tndx i = ndx 0[i] | ndx i

top i = (inf .* Y - tndx i .* (!Y))

bot i = (-tndx i .* Y - inf .* (!Y))

matrix S i = {}
P i = ghk(C[1:T,1:T], bot i, top i, U[1:T,], &S i)

U is a T × R matrix containing a sequence of draws (Halton or uniform)

to use in the simulation; S i will contain the analytical score on exit.
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The DPB function package Random-effects estimators

Derivatives

Analytical derivatives have two advantages:

1 computation speedup

2 improved precision when computing Hessian (numerical)

We use the chain rule

∂L ∗
i (ψ)

∂ψ
=
∂ 1
R

∑R
r=1 Φ∗Tr (ai ,bi ,C)

∂[ai ,bi , vech(C)]
× ∂[ai ,bi , vech(C)]

∂ψ

where

∂ 1
R

∑R
r=1 Φ∗

Tr (ai ,bi ,C)

∂[ai ,bi ,vech(C)]
is already implemented in C

∂[ai ,bi ,vech(C)]
∂ψ

is implemented in hansl for DPB
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The DPB function package Random-effects estimators

More on options

Changing the sequence of draws:

b = DPB setup("ADP", y, X, Z)

foo = DPB setoption(&b, "draws", 1)

0 Halton (default), 1 Uniform

Changing the number of GHK replications:

b = DPB setup("GADP", y, X, Z)

bar = DPB setoption(&b, "nrep", 200)

128 default

Only for the DP model, change the method:

b = DPB setup("DP", y, X, Z)

baz = DPB setoption(&b, "method", 1)

0 GHQ (default), 1 GHK. For ADP and GADP only GHK is allowed.
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The DPB function package Fixed-effects estimator

Quadratic Exponential model

Dynamic logit model: no general way to derive a sufficient statistic for the

incidental parameters

Quadratic Exponential model (Bartolucci and Nigro, 2010): directly
defines the joint probability of yi

p(yi |Xi , yi1, αi ;ψ) =
exp (

∑
t yityit−1γ +

∑
t yitx′itβ1 + yiT (µ+ x′iTβ2) + yi+αi )∑

b∈B
exp (

∑
t btbt−1γ +

∑
t btx′itβ1 + bT (µ+ x′iTβ2) + b+αi )

where B ≡
{

b : b ∈ {0, 1}T
}

, that is the set of all possible T -vectors b

containing zeros and ones.
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The DPB function package Fixed-effects estimator

Quadratic Exponential model

The conditional distribution based on the total score yi+ is

p(yi |Xi , yi1, yi+;ψ) =
p(yi |Xi , yi1, αi ;ψ)

p(yi+|Xi , yi1, αi ;ψ)
=

exp [
∑

t yit−1yitγ +
∑

t yitx
′
itβ1 + yiT (µ+ x′iTβ2)]∑

b:b+=yi+

exp
[∑

t btbt−1γ +
∑

t btx′itβ1 + bT

(
µ+ x′iTβ2

)] .
The conditional log-likelihood can be written as

`(ψ) =
n∑

i=1

1{0 < yi+ < T} log p(yi |Xi , yi1, yi+;ψ)

and maximised with respect to ψ =
[
γ,β′1, µ,β

′
2

]′
.
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The DPB function package Fixed-effects estimator

Computation of the denominator in the QE model

Consider the expression

∑
b:b+=yi+

exp

[∑
t

btbt−1γ +
∑
t

btx
′
itβ1 + bT

(
µ+ x′iTβ2

)]

The “exp” term has to be computed

for each individual (possibly, tens of thousands)

at every iteration (possibly, hundreds)

and the sum may go over several hundred terms
[

T !
y+!(T−y+)!

]
.

For performance reasons, we want to avoid loops as much as possible, and

to precompute quantities as much as possible.
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The DPB function package Fixed-effects estimator

Computation of the denominator in the QE model

The denominator can be written as a function of the matrix Qj , where

j = j(Ti , yi+, yi∗), yi∗ =
∑

t yit−1yit , with structure

Qj =
[
Q1(T , y+)

∣∣q2(y∗)
]

Q1(T , y+): a matrix with T !
y+!(T−y+)! rows and T columns whose rows

are b : b+ = yi+

q2(y∗) holds the number of consecutive ones in the corresponding row

of Q1.
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The DPB function package Fixed-effects estimator

Computation of the denominator in the QE model

For example: yi = [0, 1, 1, 0], so Ti = 4, y+ = 2, y∗ = 1

Q =



1 1 0 0 1

1 0 1 0 0

0 1 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 1 1 1


The Q1(T , y+) matrices can be computed recursively with the special

cases Q1(n, 0), Q1(n, 1), and Q1(n, n).
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The DPB function package Fixed-effects estimator

Computation of the denominator in the QE model

Since none of the Qj depend on parameters, they are precomputed with

the following algorithm:

1 initialise an empty array of matrices Q;

2 for each individual i ;

1 compute the j(i) index as a function of Ti , yi+ and yi∗;
2 if Qj has already been computed, stop and go to the next individual i ;

else

1 compute Q1(Ti , yi+) via the recursive method described above;

2 compute Qj ;

3 store Qj into the array at position j .

The likelihood becomes a simple function of Qj , which doesn’t need to be

recomputed during Newton-Raphson iterations.
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Examples

Performance comparisons

We compare DPB with:

redprob: Stata module for the DP model

redpace: Stata module for the ADP model

cquadext: Stata command for the QE model (in the cquad module)

cquad ext: R function for the QE model (in the cquad package)

We use the union dataset (N = 799, T = 6) and replicate the example in

Stewart (Stata Journal, 2006).

24 quadrature points, 500 GHK replications.

Results obtained on a system with

32 Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz
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Examples

Performance comparisons

Probit RE-Probit DP-ghq DP-ghk∗ ADP∗ QE

Gretl

log-lik -1573.64 -1563.18 -1860.21 -1860.27 -1854.618 -467.49

n. of it 41 36 44 5

time 0.02s 02.26s 15.33s 04m.06.52s 05m.20.67s 0.14s

Stata-mp

log-lik -1573.74 -1563.18 -1860.21 -1861.04 -1855.49 -467.65

n. of it 4 7 5 4 3 5

time 0.11s 0.63s 41.69s 34m.02.20s 31m.09.89s 0.39s

R

log-lik -467.65

n. of it 5

time 2.24s

∗ start form a specific vector of initial values provided in Stewart (2006)
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Conclusions

Conclusions

Other issues addressed in the paper

1 Treatment of missing values in unbalanced panels

2 Identification of autocorrelation coefficients in short panels for RE

probit models with AR(1) disturbances

3 A detailed example on how to compute Wooldridge’s estimator

4 A detailed example on how to compute partial effects

For further details:

Lucchetti, R. and Pigini, C. (2015) “DPB: Dynamic Panel Binary data

models in Gretl”, gretl working paper # 1

Further research: Dynamic sample selection model
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