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Introduction

Both packages related to the notion of predictability at h ≥ 1
(multi-horizon causality) - where h denotes horizon

The first package DPR (Dufour, Pelletier & Renault, 2006) tests for
multi-horizon causality whereas
the second package DT2010 (Dufour &Taamouti, 2010) measures
causality at h ≥ 1)

The standard concept of Granger (1969) causality (GC), h = 1,
can be generalized to test & measure GC at higher forecasting
horizons. Initially raised by Lütkepohl (1993), Lütkepohl & Burda
(1997, LB) and Lütkepohl (2005, p. 41-51 and 105-108).
Developed theoretically by Dufour & Renault (1998). Empirical
testing can be found in LB and DPR

Economic importance: causal chains or indirect causality can only
be revealed at h > 1. Auxiliary variables might transmit causality
(predictability or indirect dynamic effects)

Ioannis Venetis (University of Patras) multi-horizon causality gC 2015, Berlin 2 / 22



Multi-horizon causality explained
. . . as fast as possible . . .

We need a multivariate framework. Let yt+1
m×1

with m > 2, for

example: yt+1 =
(
y1,t+1 , y2,t+1 , y3,t+1

)′
Consider a trivariate stationary process which follows a VAR(1) y1,t+1

y2,t+1
y3,t+1

 =

 0.6 0 0.8
0 0.4 0
0 0.6 0.1


︸ ︷︷ ︸

π

 y1,t
y2,t
y3,t

+

 u1,t+1
u2,t+1
u3,t+1



with ut+1 a vector white noise process
y2 9 y1 at time t + 1. But this is not the end of the GC story. What
happens for h > 1;
Testing GC at h = 1 sufficient for (implies) either absence of
causal delays or causality at all horizons only when m = 2
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Multi-horizon causality explained
. . . as fast as possible . . .

At time t + 2, yt+2 = π2yt + πut+1 + ut+2 = π2yt + et+2 y1,t+2
y2,t+2
y3,t+2

 =

 0.36 0.48 0.56
0 0.16 0
0 0.3 0.01

 y1,t
y2,t
y3,t

+

 e1,t+2
e2,t+2
e3,t+2


that is y2

h=2→ y1 or in more (revealing) detail

y2
h=1→
0.6

y3
h=1→
0.8

y1 ⇒ y2
h=2→
0.48

y1

Hence causality (predictability) from y2 to y1 at horizon h = 2 is
transmitted through y3 (indirect causality or causality chain)
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Available testing strategies
Nonlinear and linear

Nonlinear (LB)
Estimate π̂ once from VAR(p)

H0 : y2
h=19 y1 or [π]1,2 = 0 ,

stat = g(π̂)

H0 : y2
h=29 y1 or

[
π2]

1,2 = 0 ,
stat = g(π̂2)

...

H0 : y2
h=H9 y1 or

[
πH]

1,2 = 0 ,
stat = g(π̂H)
I analytical differentiation w.r.t π̂
algebraically difficult

Linear (DPR) approach

Estimate π̂(h),h = 1, ...,H from
(p,h)-autoregressions

H0 : y2
h=19 y1 or

[
π(1)

]
1,2 = 0 ,

stat = g(π̂(1))

H0 : y2
h=29 y1 or

[
π(2)

]
1,2 = 0 ,

stat = g(π̂(2))

...

H0 : y2
h=H9 y1 or

[
π(H)

]
1,2 = 0 ,

stat = g(π̂(H))

Ioannis Venetis (University of Patras) multi-horizon causality gC 2015, Berlin 5 / 22



The Dufour, Pelletier & Renault (2006, DPR) method

Based on (p,h)−autoregresssions

Yt+h = µ
(h)
t +

p∑
k=1

π
(h)
k Yt+1−k +

d∑
k=p+1

π
(h)
k Yt+1−k + e(h)

t+h E (utu′t ) = Ω

e(h)
t+h =

h−1∑
j=0

ψhut+h−j ψh = π
(h)
1

Figure out (in advance) p,d and µ(h)t . Typically µ(h)t = µ. Package
allows for linear and quadratic trends

1. OLS estimation of Π̂(h) =
(
π
(h)
1 , ..., π

(h)
p

)′
(leave π(h)p+1, .., π

(h)
p+d out

of testing procedure).Keep column Π̂
(h)
i from i th equation

2. Wald stat: W (h) = T
(

RΠ̂
(h)
i

)′ (
RV̂ NW R′

)−1 (
RΠ̂

(h)
i

)
d→ χ2

p

3. V̂ NW Newey and West (1987) HAC variance-covariance estimator,
truncation mtrunc = h − 1

Ioannis Venetis (University of Patras) multi-horizon causality gC 2015, Berlin 6 / 22



The Dufour, Pelletier & Renault (2006, DPR) method

Based on (p,h)−autoregresssions

Yt+h = µ
(h)
t +

p∑
k=1

π
(h)
k Yt+1−k +

d∑
k=p+1

π
(h)
k Yt+1−k + e(h)

t+h E (utu′t ) = Ω

e(h)
t+h =

h−1∑
j=0

ψhut+h−j ψh = π
(h)
1

4. N simulated samples using Π̂(h), ψ̂h = π̂
(h)
1 , Ω̂ and

ut ∼ N.i .d
(

0, Ω̂
)

. Impose non-causality constraints and calculate

W (h)
n , 1 ≤ n ≤ N

5. Simulated p-value: p̂N = 1
N+1

(
1 +

N∑
n=1

1
{

W (h)
n −W (h)

})
. Reject

non-causality at horizon h and significance level α if p̂N ≤ α
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DPR package in Gretl
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DPR package in Gretl: GUI
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DPR package in Gretl.
Output: specific horizon h
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DPR package in Gretl.
Output: across horizons h = 1, ...,H
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DPR package in Gretl.
Output: All series across horizons
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DPR package in Gretl. Replication Results X
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DPR package in Gretl. Replication Results X
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Causality measures. The Dufour & Taamouti (2010,
DT) procedure

Let Yt = (y1,t , y2,t , Y3,t )
′ the available detrended series where y1,t , y2t

are 1× 1 and Y3,t is m3 × 1. Based on two VAR estimations, unrestricted
and restricted with Y0,t = (y1,t , Y3,t )

′ (drop the second variable from
available information set)

Yt =
p∑

k=1
πk Yt−k + ut Y0,t =

p∑
k=1

π0,k Y0,t−k + et

1. Figure out p prior to building the causality measures. Keep ût , π̂k ,

k = 1, ...,p and the variance-covariance matrix Σ̂u|p of the error term.
Compute the VMA(∞) Ψ̂j , j = 0, ...,h − 1, Ψ̂0 = IK , coefficient matrices
by recursive substitution based on π̂k and the unconstrained forecast

error variance-covariance matrix Σ̂p (h) =
h−1∑
j=0

Ψ̂j Σ̂u|pΨ̂′j at horizon h.

Similarly, for the constrained model calculate Σ̃0|p (h) =
h−1∑
j=0

Ψ̃j Σ̃e|pΨ̃′j

Ioannis Venetis (University of Patras) multi-horizon causality gC 2015, Berlin 15 / 22



Causality measures. The Dufour & Taamouti (2010,
DT) procedure

2. Causality measure (C.M) estimate is given by

ĈL (h) = ĈL

(
y2 →

h
y1

)
= ln


[
Σ̃0|p (h)

]
1,1[

Σ̂p (h)
]

1,1


4. Residual-based bootstrap method proposed by DT to compute the

confidence interval (lower bound, L.B & upper bound, U.B) of ĈL (h) at a
given horizon h. A mean bias correction is applied and a non-negativity
truncation is imposed

3. Prior to bootstraping C.M, a separate bootstrap using ût , π̂k is employed
to correct the bias in the estimated VAR coefficients. In step 4, the bias
corrected coefficients are employed
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DT package in Gretl
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DT package in Gretl:GUI
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DT package in Gretl: output
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DT package in Gretl. Replication results
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