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Highlights

we investigate the risk-return relationship of active portfolios,

we focus on portfolio frontiers in presence of restrictions on the
Tracking Error Volatility (TEV)

TEV = (ωP − ωB)′Σ(ωP − ωB)

and on the Value-at-Risk (VaR)

VaR = zθσP − µP ,

where

- ωP and ωB are n × 1 vectors containing the portfolio weights,
- P is the general portfolio and B is the benchmark,
- Σ is the covariance matrix of the n risky assets,
- zθ is the standard normal quantile (with 0.5 ≤ θ < 1),
- σP and µP are the risk and the expected return of portfolio P.

we focus on the trade-off between the above mentioned restrictions,

we define a new portfolio frontier,

we provide economic/financial implications.
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Basic assumptions

geometric analysis in the usual (σP , µP) space,

n risky assets,

short sales allowed,

quadratic utility function,

normally distributed returns.

Portfolio frontiers:

Mean-Variance Frontier (MVF, Markowitz, 1959),

Mean-TEV Frontier (MTF, Roll, 1992)

Constrained TEV Frontier (CTF, Jorion, 2003),

Constrained VaR Frontier (CVF, Alexander & Batista, 2008).
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Tangency portfolio K

Aim of the paper:
identify a subset of efficient VaR-TEV portfolios.

(a) stringent TEV, (b) stringent VaR
weak VaR restriction weak TEV restriction

µP

σP

B•

K
•

MVF

MTF

CVF

CTF

−V0

µP

σP

B•
•K

MVF

MTF

CVF

CTF

−V0

TRADE OFF: we can not reduce the VaR without increasing the
TEV and vice versa.
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Derivation of the RBF

min VaR = zθ
√
ω′Σω − ω′µ

sub
√

(ω − ωB)′Σ(ω − ωB) =
√
T0

ω′ι = 1,

where
- T0 is the TEV restriction,

- µ is the n-dimensional vector containing the risky asset returns,

-
√
ω′Σω = σP and ω′µ = µP ,

- ι =
[
1 1 . . . 1

]′ ha dimension n × 1.

Solutions (after some algebra):
ω∗ = x1(ω)ωC + x2(ω)ωQ + x3(ω)ωB optimal portfolio weights

λ∗1 =

√
T0

µP − µB

[
zθ
aσP

(µP − µC )− d

]
∂VaR

∂T0
(1st Lagrange m.)

λ∗2 =
zθ
aσP
− µC (2nd Lagrange multiplier)

where
- µB and µC are the benchmark and the GMV portfolio return,

- a = ι′Σ−1ι, b = ι′Σ−1µ, c = µ′Σ−1µ and d = c − b2/a
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Remarks

Starting from eq. ω∗ = x1(ω)ωC + x2(ω)ωQ + x3(ω)ωB = Wx(ω) we
prove that:

1 the portfolio ω∗ is a linear combination of 3 portfolios:
ωC - Global Minimum Variance,
ωQ - Optimal Sharpe Ratio,
ωB - Benchmark;

2 x(ω) ∈ R3 and
3∑

i=1

xi (ω) = 1;

3 benchmark portfolio: x(ω) =

0
0
1

;

4 conversely, x(ω) 6=

1
0
0

 and x(ω) 6=

0
1
0

 for portfolios ωC and ωQ

(they belong to the MVF);
5 ω∗ does not depend on the restriction TEV = T0;
6 no closed-form definition for the RBF, it must be determined via

numerical techniques.
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The Risk Balancing Frontier (RBF)

A new portfolio boundary in the standard (σP , µP) space

µP

σP

B•

M
•

J0•

J1
•

•
K

•
Z

CVF
MVF

MTF

CTF

RBF

−V0
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Properties of the RBF

1 it contains all the portfolios characterised by the minimum VaR
available for each TEV level;

2 it is an evelope of all tangency portfolios between the “oval” CTF
and the linear CVF;

3 it “starts” from the benchmark (minimum TEV = 0);

4 the tangency point to the MVF is portfolio M (minimum
VaR = VM);

5 the portfolio Z is the less risky (minimum variance on the RBF);

6 µP = g(T0) is monotonic;

7 aggressive benchmarks (µB > µM)

µP

σP

B•K•

•
Z
•M

MVF

CTFCVF

MTF

;
8 the shape does not depend on

- manager confidence level (slope of the CVF),
- slope of the horizontal axis of the CTF.
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The algorithm

{
for T0 = 0, h, 2h, 3h, . . . ,Tmax

min
µi

VaRi = zθS
1/2 (T0, µi (T0))− µi (T0),

where

- S1/2(·) is the portfolio risk over the arc Ĵ0J1,

- h : arbitrary and numerically small increment.

The algorithm proceeds via the following steps:

1 start from TEV = T0,

2 calculate the midpoint 0.5[µJ0(T0) + µJ1(T0)],

3 find the minimum VaR portfolio on J̄0J1 via BFGS,

4 determine the coordinates of portfolio K (T0),

5 increase the TEV by h and start over until T0 < Tmax.
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Economic/Financial implications

1 the RBF contains Pareto-efficient portfolios in terms of TEV-VaR;

2 augmenting the TEV/reducing the VaR: the efficiency loss
diminishes;

3 the RBF contains portfolios where
∂VaR

∂TEV
> 0: this can happen

when managers aim to increase the expected return;
4 optimal VaR-TEV efficient portfolio choice

- Uman(µK − µB
(+)

, T0
(−)

) −→ selection of risky portfolios (returns higher

than the benchmark),
- Uinv(µK

(+)

, V0
(−)

) −→ risks reduction.

5 empirical analysis: work in progress.
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Thank you. Bye Bye
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