
Automatic Procedure of Building

Congruent Dynamic Model in Gretl
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Abstract. In the last years we can observe intensive development of automatic

model selection procedures. Best known are PcGets and RETINA. Such intensive

work encourage to work on a new procedures. The concept of Congruent Mod-

elling, formulated by Prof. Zygmunt Zieliński, is a very good framework for such

development, including programming work, as well as many theoretical consider-

ations. In the paper we present our concept of algorithm for automatic congruent

modelling procedure and propose it’s implementation in Gretl.

Key words: congruent dynamic modelling, automatic model selection, forecast-

ing, PcGets, RETINA

1 Introduction

In article [3] there is a very interesting dialog between Prof. Granger and Prof.

Hendry about PcGets – automatic model selection procedure described in [5].

Prof. Granger had formulated 20 questions concerning specification of GUM,

simplification the GUM, testing economic theories, policy applications, nonsta-

tionarity, nonlinearity, multiple equation models and forecasting and asked Prof.

Hendry how PcGets – automatic model selection procedure – handles with it.

That dialog shows how automatic model selection tools are important in

contemporary econometrics, but also shows how difficult this area is. There are

two major automatic model selection procedures – PcGets1 and RETINA, de-

scribed in [9]. The aim of this paper is formulation of algorithm for automatic

1 Since PcGive 12 and OxMetrics 5, PcGets is no longer available and current automatic model

selection procedure is called Autometrics (see [2]). In this article we still use the former name,

but all our considerations on PcGets refer to Autometrics as well.
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model selection procedure based on congruent modelling approach and – as the

next step – implementation that algorithm in Gretl2.

1.1 Idea of congruent modeling

The congruent modeling refers to building dynamic econometric models and

was presented by Prof. Zygmunt Zieliński from Nicolaus Copernicus University

from Toruń in 1984.

Many assumptions underlay the formulating of initial model specification.

Some approaches refere to causal relationships, the other ones – to the internal

structure of processes of interest with omission of causality, and others take both

into account. The concept of congruent modeling, in Zieliński sense, refers to

both approaches – casual relationship and internal structure of given processes3.

A model is congruent, according to Zieliński, if the harmonic structure of

dependent process Yt is the same as the joint harmonic structure of explanatory

processes Xit �i = 1� 2� . . . � k) and the residual process, which is independent

of explanatory processes. This means that the variability of left side of model

– (Yt) must be explained by the variability of right side of model – (Xit). It

is obvious that the model built for processes having white noise properties is

always congruent:

εyt =

k�

i=1

ρiεx�t + εt� (1)

where εyt� εx�t and εt are white noises. Model (1) is congruent because har-

monic structure of both sides of equation are equal or, in other words, the pro-

cesses spectra are parallel to the frequency axis.

Let Yt and Xit �i = 1� 2� . . . � k) denote the endogenous process and ex-

planatory processes respectively with the internal structure of:

– models describing non-stationary components:

Yt = Pyt + Syt + ηyt� (2)

Xit = Px�t + Sx�t + ηx�t�

where Pyt� Px�t are polynomial functions of variable t, Syt� Sx�t denote sea-

sonal component with constant or changing in time amplitude of fluctuations

and ηyt� ηx�t are stationary autoregressive processes for respective variables,

and

2 Any information about Gretl (Gnu Regression, Econometrics and Time-series), can be found

in [1].
3 More on congruent dynamic modelling one can find in: [13], [16], [14], [7], [11], [12].
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– autoregressive processes:

B�u)ηyt = εyt� (3)

Ai�u)ηx�t = εx�t� (4)

whereB�u)� Ai�u) denote stationary autoregressive back shift operators for
which all roots of equations |B�u)| = 0 and |Ai�u)| = 0 lie outside the unit

root circle and εyt� εx�t are white noises for respective processes.

Information about internal structure of Yt and Xit processes enable to build the

congruent dynamic econometric model by substituting εyt and εx�t in model (1)

frommodels (3) and next for autoregressive processes in models (2). After trans-

formations the congruent general dynamic econometric model is as follows:

B�u)Yt =

k�

i=1

A∗i �u)Xit + Pt + St + εt� (5)

where B�u)� A∗i �u) are autoregressive back shift operators, Pt is polynomial

function of variable t, St denotes seasonal component with constant or chang-

ing in time amplitude of fluctuations and εt is white noise. The white noise εt
in model (5) has the same properties as white noise εt in model (1). Whole in-

formation of internal structure of all processes is taken into consideration. The

variability of endogenous process Yt is explained by variability of exogenous

processes Xit� �i = 1� . . . � k).
Described concept of building dynamic econometric model shows the ne-

cessity of including information about internal structure of given processes at

the model specification stage.

1.2 Linear congruent model for intergrated processes

Let4 assume that endogenous Yt and exogenous Xit are intergrated processes

with zero mean of order, respectively, dy ≥ 1 and dx�
≥ 1. It means, that:

Y ∗t = �1− u)dyYt = ΔdyYt �

X∗

it = �1− u)dx�Xit = Δdx�Xit � (6)

are covariance stationary processes with zero mean, where u is such back shift

operator, that usZt = Zt−s. Processes Y
∗

t and X∗

it can be expressed in AR

notation:

B�u)Y ∗t = εyt �

Ai�u)X
∗

it = εx�t � (7)

4 This paragraph is based on [15] and [14].



78 M. Błażejowski, P. Kufel, and T. Kufel

where εyt and εx�t are white noises with zero mean, B�u) and Ai�u) are sta-

tionary autoregressive operators of order, respectively, py and qx�
.

Operators:

B∗�u) = B�u)�1− u)dy = 1−

py+dy�

s=1

α∗su
s = 1−B∗1�u) �

A∗i �u) = Ai�u)�1− u)
dx� = 1−

px�
+dx��

s=1

γ∗su
s = 1−A∗i1�u) � (8)

are nonstationary autoregressive operators which satisfy condition, that dy or

dx�
roots of B∗�z) = 0 or A∗i �z) = 0 lie on a unit circle. Taking (8) into

account, nonstationary processes Yt and Xit can be expressed as:

Yt = B∗1�u)Yt + εyt �

Xit = A∗i1�u)Xit + εx�t . (9)

Linear congruent model (1), describing relationship between Yt andXit, can

be write down in the following form:

Yt =
k�

i=1

ρiXit −
k�

i=1

ρiA
∗

i1�u)Xit +B∗1Yt + εt � (10)

Coefficient ρ in (10) is the same as in (1). Orders of autoregressions in model (10)

are extended of orders of integration, which means, that lags of Yt are equal to

py + dy and lags of Xit are equal to px�
+ dx�

.

2 General algorithm for automatic building congruent dynamic

model

This is a very general algorithm for building congruent dynamic model, where

only main stages are described without talking over any specific solutions, in-

ternal variables, used external functions and so on. This algorithm shows only

a general idea of our procedure and it’s compatibility with congruent dynamic

econometric modelling procedure in Zieliński sense.

1. Getting outgoing data, setting following internal variables:

(a) Getting model variables: endogenous Y, list of explanatory X, list of

deterministic (dummy) variables.

(b) Getting range of the sample and setting minimal degrees of freedom

dfmin for starting general congruent model:
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i. if n < 200, then dfmin = round�0.1× n),
ii. if n ≥ 200, then dfmin = 20.

(c) Checking the frequency of time-series and setting:

i. deterministic cycle for consideration in pt. 2,

ii. maximum order pmax for autoregressive models in pt. 2c,

2. Analysis the internal structure of given processes:

(a) Checking, whether given processes have deterministic components.

(b) Checking, whether error terms after subtraction of deterministic compo-

nents are integrated.

(c) Setting orders of autoregression for given processes, starting from a

maximum order of pmax, after subtraction of deterministic components

and differentiation if there was an integration.

3. Building starting specification of general unrestricted congruent model:

(a) Checking the degrees of freedom of starting general congruent model

dfstart, taking into account all possible variables (lagged Y, current and

lagged X, trend and/or cycle, deterministic variables):

i. if dfstart < dfmin, then maximum order of autoregressive model(s),

specified in pt. 2c, is decreased by 1,

ii. if dfstart ≥ dfmin, then the starting general model is stored in

Gretl session.

4. Building congruent empirical model (specific):

(a) Specified in pt. 3 starting congruent general model is reduced according

to a posterior procedure of variable selection with use of t statistics.

(b) Congruent empirical model is stored in Gretl session.

At stage 1, we just import dataset for model: endogenous Y, list of “normal”

explanatory X and some deterministic (dummy) variables, which indicate some

special moments, i.e. free days. For next stages, we check dataset structure.

At stage 2 we perform the analysis of internal structure of explained pro-

cess Yt and explanatory processes Xit. We are looking for deterministic com-

ponents: time trend and periodicity. We assume, that we only check presence of

linear trend and ”typical” periodicity for given data: seasonality for monthly or

quarterly time-series, 1 year (52 weeks) cycle for weekly time-series and 1 week

cycle for daily data. After that we subtract deterministic components from ana-

lyzed processes and perform ADF test. If there is an integration, we difference

series and examine order of autoregression of all time-series.

At stage 3 we formulate starting congruent general model and check, if we

have sufficient degrees of freedom for running OLS estimation. This is crucial,

that we want at least 0.1 × n degrees of freedom or, if series have more then

200 observations, at least 20. If we can’t meet this condition, maximum order
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of autoregressive models is decreased by 1, so we earn at least 2 degrees of

freedom at each reduction.

At stage 4 we perform OLS estimation of coefficients of starting general

congruent model with strategy of model reduction based on a posterior elimi-

nation with t statistics as a criterion. Empirical congruent model build on above

algorithm always has white noise error terms.

3 Comparison of Congruent Modelling algorithm vs. PcGets vs.

RETINA

In this section there are shown some similarities and differences beetwen algo-

rithm based on congruent dynamic modelling theory and approaches in PcGets

and RETINA. PcGets and RETINA comparison one can find in [10] and ta-

bles (1)-(9) are based on it. There are just delivered suitable information about

our approach, so comparison of that three automatic model selection procedures

is now possible and easy. Comparison of General-to-Specific vs. Congruent

Modelling one can find in [8].

Table 1. Goals

PcGets RETINA Congruent Modelling

1. Select a parsimonious

undominated representa-

tion of an overly general

initial model, the gen-

eral unrestricted model

(GUM).

2. Best model fit within sam-

ple.

3. Congruent with theory.

1. Identify a parsimonious set

of transformed attributes

likely to be relevant for

predicting out-of-sample.

1. Congruent general model

is reduced parsimonious

congruent model in

Zieliński sense, which

means error term of white

noise properties.

2. Very good behavior in pre-

diction out of the sample.

3. Congruent with theory.

In congruent modelling we believe, that DGP is nested in the starting gen-

eral model and reduction irrelevant variables can discover it. This is very similar

to general-to-specific approach, but the starting general model is formulated in

different ways. Starting specification is based on theory and extended of in-

formation about internal structure of given processes, including deterministic

components, integration and autoregression. Autoregressive models can have

different starting order, which is the biggest difference with general-to-specific

approach.

In congruent modelling we start with congruent general model and step by

step this model is reduced to congruent empirical model with white noise error
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Table 2. Strategy

PcGets RETINA Congruent Modelling

1. General to specific.

2. Formulate a GUM and re-

duce it to a parsimonious

model using residual tests

and hypothesis testing on

coefficients.

1. Specific to general: Start

from a model with a sin-

gle transform. Add addi-

tional transforms only if

they contribute to out-of-

sample forecast ability.

2. Flexible and parsimonious

model.

3. Selective search of trans-

forms.

4. Control for collinearity.

1. Congruent general model

is reduced to congruent

empirical model.

2. Elimination insignificant

variables using a posterior

procedure based on t

statistics.

3. Empirical model is parsi-

monious.

term. As a strategy we use t statistics which has sufficient power to discover

DGP (see numerical experiment).

Table 3. Base Model

PcGets RETINA Congruent Modelling

1. GUM: specified by the re-

searcher, usually based on

theory. May use transforms

of the original variables.

1. Based on original inputs

and transforms, automat-

ically selected from the

first subsample by cross-

validation in the second,

controlling for collinearity.

1. Specification of starting

general congruent is based

on a theory and extended

of information of internal

structure of all included

processes.

2. Congruent model may use

transformed processes.

Base model is formulated on two basis: theory, which gives us causal rela-

tionships between variables and on the internal structure of all processes. This

guarantee, that hole variability of Yt and allXit processes is included, so model

is congruent (error term has white noise properties).

Congruent modelling assumes linear in parameters model, but variables can

be log-transformed. Model can be nonlinear in variables, so congruent mod-

elling gives maximum flexibility.

Starting congruent general model is unrestricted and, because of specifica-

tion, based on the internal structure of all processes, overparametrizied, but step

by step model is being reduced with use of t statistics and a posterior procedure.

Final (empirical) congruent model is parsimonious.



82 M. Błażejowski, P. Kufel, and T. Kufel

Table 4. Flexibility

PcGets RETINA Congruent Modelling

1. The GUM determines

maximum flexibility. May

include transforms of the

original variables.

1. The permitted transforma-

tions of the inputs deter-

mine maximum flexibility.

2. The actual flexibility of the

candidate model is chosen

by the procedure.

1. Congruent general model

is unrestricted, so it gives

maximum flexibility.

Table 5. Selective/Systematic Search

PcGets RETINA Congruent Modelling

1. Starting from the GUM,

performs a systematic

search using multiple

reduction paths.

2. Using diagnostics, checks

the validity of each reduc-

tion until terminal selec-

tion.

3. When all paths are ex-

plored, repeatedly tests

models against their union

until a unique final model

is obtained.

1. Uses a selective search to

avoid the heavy task of

evaluating all 2m possi-

ble models and of applying

some form of model selec-

tion.

2. A saliency feature of the

transforms, such as the cor-

relation with the dependent

variable, is used to con-

struct a natural order of the

transforms in which they

are considered.

3. Only a number of candi-

date models of order pro-

portional to m is consid-

ered.

1. Starting from congruent

general model and reduce

it by eliminating irrelevant

variables with t statistics.

Table 6. Colinearity

PcGets RETINA Congruent Modelling

1. Seeks to formulate the

GUM, in search for a rela-

tively orthogonal specifica-

tion.

2. A quick modeler option

is available in PcGets for

nonexpert users.

1. Controls for collinearity by

adding an additional trans-

form to the candidate list

only if the collinearity is

below a certain (user de-

fined) threshold.

1. Colinearity is controlled by

GRETL.

Table 7. Explanatory Variables

PcGets RETINA Congruent Modelling

1. Original variables and

transformations specified

in the GUM.

1. Original variables and non-

linear transformations al-

lowed for by the procedure.

1. Original variables and

handmade transformations

specified at the beginning

of procedure.
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Table 8. Linearity

PcGets RETINA Congruent Modelling

1. Linear or nonlinear in the

parameters, as specified by

the GUM.

2. Linear or nonlinear in the

underlying variables, as

specified by the GUM.

1. Linear in the parameters.

2. Linear or nonlinear in the

underlying variables.

1. Linear in the parameters.

2. Linear or nonlinear in the

underlying variables.

Congruent model assumes linearity in parameters, so computation is simple

(we use OLS estimation). Transformations of variables are allowed, so starting

general model can be nonlinear in the underlying variables.

Table 9. Types of Data Applicable So Far

PcGets RETINA Congruent Modelling

1. Time series or cross-

section.

1. Mainly cross-section at

present (no obstacles to its

application in a time series

context).

1. Time-series.

Congruent modelling is applicable to time-series and cross-section data as

well, but our automatic procedure assumes time-series only. Congruent mod-

elling approach is also applicable to multiple equation systems, including simul-

taneous equation models, but automatic procedure for it would be very compli-

cated (but not impossible).

4 Numerical experiment

To introduce the efficiency of model selection using the congruent modeling

postulate there is numerical experiment presented. The experiment is based

on Monte Carlo simulations. The scenario of experiment is summarized in ta-

ble (10).

We assume situation (which is actually very common real case), that we do

not have any observations of Zt process, which is the component of DGP pro-

cess. Because of autoregressive internal structure of X and Z processes (Xt� Zt ∼
AR�1)), specification of starting congruent general model in table (10) was

based on internal autoregressive structure ofXt ∼ AR�1) and Yt ∼ AR�2) or AR�3),
as a result of combination of two AR�1) processes (see [4]).

For both scenarios following steps were realized:
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Table 10. Experimental design

DGP

Yt = 3Xt + 3Zt + εyt εyt ∼ IN�0� σ2

y)
Xt = βxXt�1 + εxt εxt ∼ IID�0� 1)
Zt = βzZt�1 + εzt εzt ∼ IID�0� 1)
εxt = ρεzt t = 1� 2 . . . � n

Congruent General Model

Yt = α� + α1Xt + α2Xt�1 + α3Yt�1 + α4Yt�2 + α5Yt�3 + εt εt ∼ IID

Experiment A �α = 0.01) – table (11)

DGP:

n = �300� 120� 60� 20}
ρ = �0.0� 0.2� 0.4� 0.6� 0.8}, σy = �1� 3}
βx = �0.6� 0.8� 0.95}, βz = �0.6� 0.8� 0.95}

Experiment B �α = 0.05) – table (12)
DGP:

n = �300� 120� 60� 20}
ρ = �0.0� 0.2� 0.4� 0.6� 0.8}, σy = �1� 3}
βx = �0.6� 0.8� 0.95}, βz = �0.6� 0.8� 0.95}

1. Coefficients of the starting congruent general model, specified according to

congruence postulate and formulated in table (10), was estimated by OLS

method.

2. Elimination of insignificant processes was based on t-Student statistics and

realized according to a posterior procedure at significance level of α =
�0.01� 0.05}.

3. Encompassing J test was run verifying the null hypothesis that the empirical

model is special case of DGP. The number of not rejected null hypothesis

was compared.

Tables (11) and (12) present percentage of non rejection the null hypothe-

sis that the empirical congruent model is a special case of DGP. Results of J

test show, that for samples of n = �300� 120} all cases of empirical congruent

models, which were build without relevant process Zt (one of the components

of DGP process), was a special case of the data generating process. For samples

n = 60 and noise ε ∼ N�0� 1) percentage of discover of DGP was 99%–100%

and for noise ε ∼ N�0� 9) it was 87%–100%. For samples n = 20 percentage of

discovering DGP was much lower and for noise ε ∼ N�0� 1) it was 70%–95%

and for noise ε ∼ N�0� 9) it was 41%–88%.

So the conclusion is, that a posterior elimination procedure based on t statis-

tics has sufficient power and even for small samples, percentage of discovering

DGP is still relatively high and has a value of about 70%–80%.
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Table 11. Percentage of not rejecting the null hypothesis assuming that congru-

ent model is special case of DGP for α = 0.01

βx=0,6 βx=0,8 βx=0,95

n εt ρ βz=0,6 βz=0,8 βz=0,95 βz=0,6 βz=0,8 βz=0,95 βz=0,6 βz=0,8 βz=0,95

n=300 εt�0� 1) ρ =0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ =0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n=120 εt�0� 1) ρ =0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ =0,0 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n=60 εt�0� 1) ρ =0,0 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ =0,0 0.87 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00

ρ =0,2 0.92 0.98 1.00 0.99 1.00 1.00 0.99 1.00 1.00

ρ =0,4 0.92 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00

ρ =0,6 0.94 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00

ρ =0,8 0.95 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00

n=20 εt�0� 1) ρ =0,0 0.85 0.85 0.92 0.83 0.89 0.93 0.88 0.91 0.96

ρ =0,2 0.76 0.86 0.91 0.81 0.88 0.94 0.87 0.91 0.95

ρ =0,4 0.75 0.83 0.87 0.82 0.88 0.92 0.85 0.92 0.95

ρ =0,6 0.73 0.83 0.86 0.84 0.88 0.92 0.87 0.90 0.94

ρ =0,8 0.70 0.80 0.83 0.82 0.88 0.90 0.84 0.90 0.93

εt�0� 3) ρ =0,0 0.61 0.68 0.75 0.73 0.81 0.84 0.81 0.87 0.88

ρ =0,2 0.54 0.66 0.72 0.67 0.78 0.79 0.77 0.82 0.85

ρ =0,4 0.51 0.59 0.70 0.63 0.72 0.79 0.72 0.80 0.82

ρ =0,6 0.47 0.56 0.67 0.59 0.67 0.75 0.72 0.80 0.79

ρ =0.8 0.41 0.51 0.56 0.54 0.60 0.68 0.66 0.71 0.73
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Table 12. Percentage of not rejecting the null hypothesis assuming that congru-

ent model is special case of DGP for α = 0.05

βx=0,6 βx=0,8 βx=0,95

n εt ρ βz=0,6 βz=0,8 βz=0,95 βz=0,6 βz=0,8 βz=0,95 βz=0,6 βz=0,8 βz=0,95

n=300 εt�0� 1) ρ =0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ=0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n=120 εt�0� 1) ρ=0,0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ=0,0 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ =0,8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n=60 εt�0� 1) ρ=0,0 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ=0,2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ=0,4 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ=0,6 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ρ=0,8 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

εt�0� 3) ρ=0,0 0.89 0.98 1.00 0.98 0.99 1.00 1.00 1.00 1.00

ρ=0,2 0.91 0.98 1.00 0.98 1.00 1.00 0.99 1.00 1.00

ρ=0,4 0.93 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00

ρ=0,6 0.93 0.99 1.00 0.98 1.00 1.00 0.99 1.00 1.00

ρ=0,8 0.95 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00

n=20 εt�0� 1) ρ=0,0 0.73 0.85 0.91 0.80 0.89 0.92 0.84 0.92 0.94

ρ=0,2 0.73 0.81 0.87 0.78 0.89 0.93 0.88 0.91 0.91

ρ=0,4 0.70 0.82 0.85 0.79 0.86 0.90 0.84 0.90 0.91

ρ=0,6 0.72 0.77 0.84 0.77 0.88 0.89 0.81 0.90 0.92

ρ=0,8 0.70 0.76 0.81 0.80 0.87 0.88 0.82 0.87 0.93

εt�0� 3) ρ=0,0 0.53 0.61 0.70 0.62 0.72 0.77 0.76 0.79 0.82

ρ=0,2 0.50 0.57 0.68 0.61 0.69 0.77 0.70 0.77 0.83

ρ=0,4 0.51 0.57 0.65 0.57 0.69 0.77 0.68 0.75 0.83

ρ=0,6 0.45 0.55 0.65 0.59 0.67 0.72 0.66 0.76 0.79

ρ=0.8 0.41 0.47 0.56 0.52 0.55 0.64 0.64 0.70 0.70
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5 Summary

In the paper we discussed power of the congruent modelling concept and it is

intrinsic features for being the base for automatic model selection procedure.

Although we formulated full algorithm for such procedure, our considerations

was theoretical. So the next stage of our work will be implementation this algo-

rithm in Gretl. Our automatic procedure will:

1. Investigate internal trend-seasonal-autoregressive structure for all processes.

2. Formulate congruent general model on the basis of initial list of explanatory

extended of it’s internal components.

3. Run OLS estimation and eliminate insignificant variables according to a

posterior procedure based on t statistics.

4. Store empirical congruent model in Gretl session.
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