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Abstract. An account is given of various filtering procedures that have been

implemented in a computer program, which can be used in analysing economet-

ric time series. The program provides some new filtering procedures that oper-

ate primarily in the frequency domain. Their advantage is that they are able to

achieve clear separations of components of the data that reside in adjacent fre-

quency bands in a way that the conventional time-domain methods cannot.

Several procedures that operate exclusively within the time domain have also

been implemented in the program. Amongst these are the bandpass filters of Bax-

ter and King and of Christiano and Fitzgerald, which have been used in estimat-

ing business cycles. The Henderson filter, the Butterworth filter and the Leser

or Hodrick–Prescott filter are also implemented. These are also described in this

paper

Econometric filtering procedures must be able to cope with the trends that are

typical of economic time series. If a trended data sequence has been reduced to

stationarity by differencing prior to its filtering, then the filtered sequence will

need to be re-inflated. This can be achieved within the time domain via the sum-

mation operator, which is the inverse of the difference operator. The effects of the

differencing can also be reversed within the frequency domain by recourse to the

frequency-response function of the summation operator.

1 Introduction

This paper gives an account of some of the facilities that are available in a new

computer program, which implements various filters that can be used for extract-

ing the components of an economic data sequence and for producing smoothed

and seasonally-adjusted data from monthly and quarterly sequences.

The program can be downloaded from the following web address:

http://www.le.ac.uk/users/dsgp1/

It is accompanied by a collection of data and by three log files, which record

steps that can be taken in processing some typical economic data. Here, we give

an account of the theory that lies behind some of the procedures of the program.
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The program originated in a desire to compare some new methods with

existing procedures that are common in econometric analyses. The outcome

has been a comprehensive facility, which will enable a detailed investigation of

univariate econometric time series. The program will also serve to reveal the

extent to which the results of an economic analysis might be the consequence

of the choice of a particular filtering procedure.

The new procedures are based on the Fourier analysis of the data, and they

perform their essential operations in the frequency domain as opposed to the

time domain. They depend upon a Fourier transform for carrying the data into

the frequency domain and upon an inverse transform for carrying the filtered ele-

ments back to the time domain. Filtering procedures usually operate exclusively

in the time domain. This is notwithstanding fact that, for a proper understanding

of the effects of a filter, one must know its frequency-response function.

The sections of this paper give accounts of the various classes of filters that

have been implemented in the program. In the first category, to which section

2 is devoted, are the simple finite impulse response (FIR) or linear moving-

average filters that endeavour to provide approximations to the so-called ideal

frequency-selective filters. Also in this category of FIR filters is the time-honoured

filter of Henderson (1916), which is part of a seasonal-adjustment program that

is widely used in central statistical agencies.

The second category concerns filters of the infinite impulse response (IIR)

variety, which involve an element of feedback. The filters of this category that

are implemented in the program are all derived according to theWiener–Kolmogorov

principle. The principle has been enunciated in connection with the filtering of

stationary and doubly-infinite data sequences—see Whittle (1983), for exam-

ple. However, the purpose of the program is to apply these filters to short non

stationary sequences. In section 3, the problem of non stationarity is broached,

whereas, in section 4, the adaptations that are appropriate to short sequences are

explained.

Section 5 deals with the new frequency-domain filtering procedures. The

details of their implementation are described and some of their uses are high-

lighted. In particular, it is shown how these filters can achieve an ideal frequency

selection, whereby all of the elements of the data that fall below a given cut-off

frequency are preserved and all those that fall above it are eliminated.

2 The FIR filters

One of the purposes in filtering economic data sequences is to obtain a rep-

resentation of the business cycle that is free from the distractions of seasonal

fluctuations and of high-frequency noise. According to Baxter and King (1999),
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Fig. 1. The frequency response of the truncated bandpass filter of 25 coefficients

superimposed upon the ideal frequency response. The lower cut-off point is at

π/16 radians (11.25◦), corresponding to a period of 32 quarters, and the upper

cut-off point is at π/3 radians (60◦), corresponding to a period of the 6 quarters.

the business cycle should comprise all elements of the data that have cyclical

durations of no less than of one and a half years and not exceeding eight years.

For this purpose, they have proposed to use a moving-average bandpass filter to

approximate the ideal frequency-selective filter. An alternative approximation,

which has the same purpose, has been proposed by Christiano and Fitzgerald

(2003). Both of these filters have been implemented in the program.

A stationary data sequence can be resolved into a sum of sinusoidal ele-

ments whose frequencies range from zero up to the Nyquist frequency of π
radians per sample interval, which represents the highest frequency that is ob-

servable in sampled data. A data sequence �yt� t = 0� 1� . . . � T − 1} comprising

T observations has the following Fourier decomposition:

yt =

[T/2]�

t−0

�αj cos�ωjt) + βj sin�ωjt)}. (1)

Here, [T/2] denotes the integer quotient of the division of T by 2. The harmon-

ically related Fourier frequencies ωj = 2πj/T ; j = 0� . . . � [T/2], which are

equally spaced in the interval [0� π], are integer multiples of the fundamental

frequency ω1 = 2π/T , whereas αj � βj are the associated Fourier coefficients,

which indicate the amplitudes of the sinusoidal elements of the data sequence.

An ideal filter is one that transmits the elements that fall within a specified fre-

quency band, described as the pass band, and which blocks elements at all other

frequencies, which constitute the stop band.
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In representing the properties of a linear filter, it is common to imagine

that it is operating on a doubly-infinite data sequence of a statistically station-

ary nature. Then, the Fourier decomposition comprises an infinity of sinusoidal

elements of negligible amplitudes whose frequencies form a continuum in the

interval [0� π]. The frequency-response function of the filter displays the factors
by which the amplitudes of the elements are altered in their passage through the

filter.

For an ideal filter, the frequency response is unity within the pass band and

zero within the stop band. Such a response is depicted in Figure 1, where the

pass band, which runs from π/16 to π/3 radians per sample interval, is intended

to transmit the elements of a quarterly econometric data sequence that constitute

the business cycle.

To achieve an ideal frequency selection with a linear moving-average filter

would require an infinite number of filter coefficients. This is clearly impracti-

cal; and so the sequence of coefficients must be truncated, wherafter it may be

modified in certain ways to diminish the adverse effects of the truncation.

2.1 Approximation to the Ideal Filter

Figure 1 also shows the frequency response of a filter that has been derived

by taking twenty-five of the central coefficients of the ideal filter and adjusting

their values by equal amounts so that they sum to zero. This is the filter that

has been proposed by Baxter and King (1999) for the purpose of extracting

the business cycle from economic data. The filter is affected by a considerable

leakage, whereby elements that fall within the stop band are transmitted in part

by the filter.

The z-transform of a sequence �ψj} of filter coefficients is the polynomial

ψ�z) =
�

j ψjz. Constraining the coefficients to sum to zero ensures that the

polynomial has a root of unity, which is to say that ψ�1) =
�

j ψj = 0. This
implies that∇�z) = 1−z is a factor of the polynomial, which indicates that the

filter incorporates a differencing operator.

If the filter is symmetric, such that ψ�z) = ψ0+ψ1�z+z−1)+· · ·+ψq�z
q +

z−q) and, therefore, ψ�z) = ψ�z−1), then 1 − z−1 is also a factor. Then, ψ�z)
has the combined factor �1 − z)�1 − z−1) = −z∇�z)2, which indicates that

the filter incorporates a twofold differencing operator. Such a filter is effective

in reducing a linear trend to zero; and, therefore, it is applicable to econometric

data sequences that have an underlying log-linear trend.

The filter of Baxter and King (1999), which fulfils this condition, is appro-

priate for the purpose of extracting the business cycle from a trended data se-

quence. Figure 2 shows the logarithms of data of U.K. real domestic consump-



IDEOLOG—A Filtering Program 19

10

10.5

11

11.5

1960 1970 1980 1990

Fig. 2. The quarterly sequence of the logarithms of consumption in the U.K., for

the years 1955 to 1994, together with a linear trend interpolated by least-squares

regression.
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Fig. 3. The sequence derived by applying the truncated bandpass filter of 25

coefficients to the quarterly logarithmic data on U.K. consumption.
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Fig. 4. The sequence derived by applying the bandpass filter of Christiano and

Fitzgerald to the quarterly logarithmic data on U.K. consumption.
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tion for the years 1955–1994 through which a linear trend has been interpolated.

Figure 3 shows the results of subjecting these data to the Baxter–King filter. A

disadvantage of the filter, which is apparent in Figure 3, is that it is incapable of

reaching the ends of the sample. The first q sample values and the last q remain

unprocessed.

To overcome this difficulty, Christiano and Fitzgerald (2003) have proposed

a filter with a variable set of coefficients. To generate the filtered value at time

t, they associate the central coefficient ψ0 with yt. If yt−p falls within the sam-

ple, then they associate it with the coefficient ψp. Otherwise, if it falls outside

the sample, it is disregarded. Likewise, if yt+p falls within the sample, then it

is associated with ψp, otherwise it is disregarded. If the data follow a first-order

random walk, then the first and the last sample elements y0 and yT−1 receive

extra weights A and B, which correspond to the sums of the coefficients dis-

carded from the filter at either end. The resulting filtered value at time t may be

denoted by

xt = Ay0 + ψty0 + · · ·+ ψ1yt−1 + ψ0yt (2)

+ ψ1yt+1 + · · ·+ ψT−1−tyT−1 +ByT−1.

This equation comprises the entire data sequence y0� . . . � yT−1; and the

value of t determines which of the coefficients of the infinite-sample filter are

involved in producing the current output. The value of x0 is generated by look-

ing forwards to the end of the sample, whereas the value of xT−1 is generated

by looking backwards to the beginning of the sample.

For data that appear to have been generated by a first-order random walk

with a constant drift, it is appropriate to extract a linear trend before filtering the

residual sequence. Figure 4 provides an example of the practice. In fact, this has

proved to be the usual practice in most circumstances.

Within the category of FIR filters, the program also implements the time

honoured smoothing filter of Henderson (1916), which forms an essential part of

the detrending procedure of the X-11 program of the Bureau of the Census. This

program provides the method of seasonal adjustment that is used predominantly

by central statistical agencies.

Here, the end-of-sample problem is overcome by supplementing the Hen-

derson filter with a set of asymmetric filters that can be applied to the elements

of the first and the final segments. These are the Musgrave (1964) filters. (See

Quenneville, Ladiray and Lefranc, 2003 for a recent account of these filters.)

In the X-11 ARIMA variant, which is used by Statistics Canada, the alternative

recourse is adopted of extrapolating the data beyond the ends of the sample so

that it can support a time-invariant filter that does run to the ends.
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3 The Wiener–Kolmogorov Filters

The program also provides several filters of the feedback variety that are com-

monly described as infinite-impulse response (IIR) filters. The filters in question

are derived according to the finite-sample Wiener–Kolmogorov principle that

has been expounded by Pollock (2000, 2007).

The ordinary theory of Wiener–Kolmogorov filtering assumes a doubly-

infinite data sequence y�t) = ξ�t) + η�t) = �yt; t = 0�±1�±2� . . .} generated
by a stationary stochastic process. The process is compounded from a signal

process ξ�t) and a noise process η�t) that are assumed to be statistically inde-

pendent and to have zero-valued means. Then, the autocovariance generating

function of y�t) is given by

γy�z) = γξ�z) + γη�z)� (3)

which is sum of the autocovariance functions of ξ�t) and η�t).
The object is to extract estimates of the signal sequence ξ�t) and the noise

sequence η�t) from the data sequence. The z-transforms of the relevant filters

are

βξ�z) =
γξ�z)

γξ�z) + γη�z)
=
ψξ�z

−1)ψξ�z)

φ�z−1)φ�z)
� (4)

and

βη�z) =
γη�z)

γξ�z) + γη�z)
=
ψη�z

−1)ψη�z)

φ�z−1)φ�z)
. (5)

It can been that βξ�z)+βη�z) = 1, in view of which the filters can be described

as complementary.

The factorisations of the filters that are given on the RHS enable them to be

applied via a bi-directional feedback process. In the case of the signal extraction

filter βξ�z), the process in question can be represented by the equations

φ�z)q�z) = ψξ�z)y�z) and φ�z−1)x�z) = ψξ�z
−1)q�z−1)� (6)

wherein q�z), y�z) and x�z) stand for the z-transforms of the corresponding

sequences q�t), y�t) and x�t).
To elucidate these equations, we may note that, in the first of them, the

expression associated with zt is

m�

j=0

φjqt−j =
n�

j=0

ψξ�jyt−j . (7)

Given that φ0 = 1, this serves to determine the value of qt. Moreover, given that

the recursion is assumed to be stable, there need be no restriction on the range
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of t. The first equation, which runs forward in time, generates an intermediate

output q�t). The second equation, which runs backwards in time, generates the

final filtered output x�t).

3.1 Filters for Trended Data

The classical Wiener–Kolmogorov theory can be extended in a straightforward

way to cater for non stationary data generated by integrated autoregressive moving-

average (ARIMA) processes in which the autoregressive polynomial contains

roots of unit value. Such data processes can be described by the equation

y�z) =
δ�z)

∇p�z)
+ η�z) or, equivalently, ∇p�z)y�z) = δ�z) +∇p�z)η�z)�

(8)

where δ�z) and η�z) are, respectively, the z-transforms of the mutually indepen-

dent stationary stochastic sequences δ�t) and η�t), and where∇p�z) = �1−z)p

is the p-th power of the difference operator.

Here, there has to be some restriction on the range of t together with the

condition that the elements δt and ηt are finite within this range. Also, the z-
transforms must comprise the appropriate initial conditions, which are effec-

tively concealed by the notation. (See Pollock 2008 on this point.)

Within the program, two such filters have been implemented. The first is

the filter of Leser (1961) and of Hodrick and Prescott (1980, 1997), which is

designed to extract the non stationary signal or trend component when the data

are generated according to the equation

∇2�z)y�z) = g�z) = δ�z) +∇2�z)η�z)� (9)

where δ�t) are η�t) are mutually independent sequences of independently and

identically distributed random variables, generated by so-called white-noise pro-

cesses. With γδ�z) = σ2
δ and γξ�z) = σ2

δ∇�z−1)∇�z) and with γη�z) = σ2
η ,

the z-transforms of the relevant filters become

βξ�z) =
1

1 + λ∇2�z−1)∇2�z)
� (10)

and

βη�z) =
∇2�z−1)∇2�z)

λ−1 +∇2�z−1)∇2�z)
� (11)

where λ = σ2
η/σ

2
δ , which is described as the smoothing parameter.

The frequency-response functions of the filters for various values of λ are

shown in Figure 5. These are obtained by setting z = e−iω = cos�ω)− i sin�ω)
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Fig. 5. The frequency-response function of the Hodrick–Prescott smoothing fil-

ter for various values of the smoothing parameter λ.

Fig. 6. The frequency-response function of the lowpass Butterworth filters of

orders n = 6 and n = 12 with a nominal cut-off point of 2π/3 radians.

in the formula of (10) and by letting ω run from 0 to π. (In the process, the

imaginary quantities are cancelled so as to give rise to the real-valued functions

that are plotted in the diagram.)

It is notable that the specification of the underlying process y�t), in which

both the signal component ξ�z) = δ�z)/∇2�z) and the noise component η�z)
have spectral density functions that extend over the entire frequency range, pre-

cludes the clear separation of the components. This is reflected in the fact that,

for all but the highest values λ, the filter transmits significant proportions of the

elements at all frequencies.

The second of the Wiener–Kolmogorov filters that are implemented in the

program is capable of a much firmer discrimination between the signal and noise

than is the Leser (1961) filter. This is the Butterworth (1930) filter, which was
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Fig. 7. The pole–zero diagrams of the lowpass Butterworth filters for n = 6
when the cut-off is at ω = π/2 (left) and at ω = π/8.

originally devised as an analogue filter but which can also be rendered in digital

form—See Pollock (2000). The filter would be appropriate for extracting the

component �1 + z)nδ�z) from the sequence

g�z) = �1 + z)nδ�z) + �1− z)nκ�z). (12)

Here, δ�t) and κ�t) denote independent white-noise processes, whereas there is
usually g�z) = ∇2�z)y�z), where y�t) is the data process. This corresponds to
the case where twofold differencing is required to eliminate a trend from the

data. Under these circumstances, the equation of the data process is liable to be

represented by

y�z) = ξ�z) + η�z) (13)

=
�1 + z)n

∇2�z)
δ�z) + �1− z)n−2κ�z).

However, regardless of the degree of differencing to which y�t) must be sub-

jected in reducing it to stationarity, the z-transforms of the complementary fil-

ters will be

βξ�z) =
�1 + z−1)n�1 + z)n

�1 + z−1)n�1 + z)n + λ�1− z−1)n�1− z)n
� (14)

and

βη�z) =
�1− z−1)n�1− z)n

λ−1�1 + z−1)n�1 + z)n + �1− z−1)n�1− z)n
� (15)

where λ = σ2
κ/σ

2
δ .
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It is straightforward to determine the value of λ that will place the cut-off of

the filter at a chosen point ωc ∈ �0� π). Consider setting z = exp�−iω} in the

formula of (14) of the lowpass filter. This gives the following expression for the

gain:

βξ�e
−iω) =

1

1 + λ

�

i
1− e−iω

1 + e−iω

�2n (16)

=
1

1 + λ
�

tan�ω/2)
�2n .

At the cut-off point, the gain must equal 1/2, whence solving the equation

βξ�exp�−iωc}) = 1/2 gives λ = �1/ tan�ωc/2)}2n.

Figure 6 shows how the rate of the transition of the Butterworth frequency

response between the pass band and the stop band is affected by the order of

the filter. Figure 7 shows the pole–zero diagrams of filters with different cut-

off points. As the cut-off frequency is reduced, the transition between the two

bands becomes more rapid. Also, some of the poles of the filter move towards

the perimeter of the unit circle.

3.2 A Filter for Seasonal Adjustment

The Wiener–Kolmogorov principle is also used in deriving a filter for the sea-

sonal adjustment of monthly and quarterly econometric data. The filter is de-

rived from a model that combines a white-noise component η�t) with a sea-

sonal component obtained by passing an independent white noise ν�t) through
a rational filter with poles located on the unit circle at angles corresponding to

the seasonal frequencies and with corresponding zeros at the same angles but

located inside the circle. The z-transform of the output sequence gives

y�z) = η�z) +
R�z)

S�z)
ν�z) or (17)

S�z)y�z) = S�z)η�z) +R�z)ν�z)�

where

R�z) = 1 + ρz + ρ2z2 + · · ·+ ρs−1zs−1 (18)

with ρ < 1, and
S�z) = 1 + z + z2 + · · ·+ zs−1. (19)

The z-transform of the seasonal-adjustment filter is

β�z) =
σ2

ηS�z)S�z−1)

S�z)S�z−1)σ2
η + σ2

νR�z)R�z−1)
. (20)
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Fig. 8. The gain of a filter for the seasonal adjustment of monthly data. The

defining parameters are ρ = 0.9 and λ = σ2
η/σ

2
ν = 0.125.

Setting z = exp�−iω} and letting ω run from 0 to π generates the frequency

response of the filter, of which the modulus or gain is plotted in Figure 8 for the

case where ρ = 0.9 and λ = σ2
η/σ

2
ν = 0.125.

4 The Finite-Sample Realisations of the W–K Filters

To derive the finite-sample version of a Wiener–Kolmogorov filter, we may con-

sider a data vector y = [y0� y1� . . . � yt−1� ]
� that has a signal component ξ and a

noise component η:
y = ξ + η. (21)

The two components are assumed to be independently normally distributed with

zero means and with positive-definite dispersion matrices. Then,

E�ξ) = 0� D�ξ) = Ωξ� (22)

E�η) = 0� D�η) = Ωη�

and C�ξ� η) = 0.

A consequence of the independence of ξ and η is that D�y) = Ωξ +Ωη.

The estimates of ξ and η, which may be denoted by x and h respectively,

are derived according to the following criterion:

Minimise S�ξ� η) = ξ�Ω−1
ξ ξ + η�Ω−1

η η subject to ξ + η = y. (23)

Since S�ξ� η) is the exponent of the normal joint density function N�ξ� η), the
resulting estimates may be described, alternatively, as the minimum chi-square

estimates or as the maximum-likelihood estimates.
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Substituting for η = y − ξ gives the concentrated criterion function S�ξ) =
ξ�Ω−1

ξ ξ + �y − ξ)�Ω−1�y − ξ). Differentiating this function in respect of ξ and
setting the result to zero gives a condition for a minimum, which specifies the

estimate x. This is Ω−1
η �y − x) = Ω−1

ξ x, which, on pre multiplication by Ωη,

can be written as y = x−ΩηΩ
−1
ξ x = �Ωξ +Ωη)Ω

−1
ξ x. Therefore, the solution

for x is

x = Ωξ�Ωξ +Ωη)
−1y. (24)

Moreover, since the roles of ξ and η are interchangeable in this exercise, and,

since h+ x = y, there are also

h = Ωη�Ωξ +Ωη)
−1y and x = y −Ωη�Ωξ +Ωη)

−1y. (25)

The filter matrices Bξ = Ωξ�Ωξ + Ωη)
−1 and Bη = Ωη�Ωξ + Ωη)

−1 of (24)

and (25) are the matrix analogues of the z-transforms displayed in equations (4)

and (5).

A simple procedure for calculating the estimates x and h begins by solving

the equation

�Ωξ +Ωη)b = y (26)

for the value of b. Thereafter, one can generate

x = Ωξb and h = Ωηb. (27)

IfΩξ andΩη correspond to the narrow-band dispersion matrices of moving-

average processes, then the solution to equation (26) may be found via a Cholesky

factorisation that sets Ωξ + Ωη = GG�, where G is a lower-triangular matrix

with a limited number of nonzero bands. The system GG�b = y may be cast in

the form of Gp = y and solved for p. Then, G�b = p can be solved for b. The
procedure has been described by Pollock (2000).

4.1 Filters for Short Trended Sequences

To adapt these estimates to the case of trended data sequences may require the

provision of carefully determined initial conditions with which to start the re-

cursive processes. A variety of procedures are available that are similar, if not

identical, in their outcomes. The procedures that are followed in the program

depend upon reducing the data sequences to stationarity, in one way or another,

before subjecting them to the filters. After the data have been filtered, the trend

is liable to be restored.

The first method, which is the simplest in concept, requires the trend to be

represented by a polynomial function. In some circumstances, when the econ-

omy has been experiencing steady growth, the polynomial will serve as a reason-

able characterisation of its underlying trajectory. Thus, in the period 1955–1994
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a log-linear trend function provides a firm benchmark against which to measure

the cyclical fluctuations of the U.K. economy. The residual deviations from this

trend may be subjected to a lowpass filter; and the filtered output can be added

to the trend to produce a representation of what is commonly described as the

trend-cycle component.

It is desirable that the polynomial trend should interpolate the scatter of

points at either end of the data sequence. For this purpose, the program provides

a method of weighted least-squares polynomial regression with a wide choice

of weighting schemes, which allow extra weight to be placed upon the initial

and the final runs of observations.

An alternative way of eliminating the trend is to take differences of the data.

Usually, twofold differencing is appropriate. The matrix analogue of the second-

order backwards difference operator in the case of T = 5 is given by

∇2
5 =

�
Q�
∗

Q�

�

=

�







1 0 0 0 0
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1








. (28)

The first two rows, which do not produce true differences, are liable to be dis-

carded. In general, the p-fold differences of a data vector of T elements will be

obtained by pre multiplying it by a matrix Q� of order �T − p) × T . Applying
Q� to equation (21) gives

Q�y = Q�ξ +Q�η (29)

= δ + κ = g.

The dispersion matrices of the differenced vectors are

D�δ) = Ωδ = Q�D�Ωξ)Q and D�κ) = Ωκ = Q�D�Ωη)Q. (30)

The estimates d and k of the differenced components are given by

d = Ωδ�Ωδ +Q�ΩηQ)−1Q�y (31)

and

k = Q�ΩηQ�Ωδ +Q�ΩηQ)−1Q�y. (32)

To obtain estimates of ξ and η, the estimates of their difference versions must

be re-inflated via an anti-differencing or summation operator. We begin by ob-
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serving that the inverse of∇2
5 is a twofold summation operator given by

∇−2
5 =

�
S∗ S

�
=

�






1 0 | 0 0 0
2 1 | 0 0 0
3 2 | 1 0 0
4 3 | 2 1 0
5 4 | 3 2 1







. (33)

The first two columns, which constitute the matrix S∗, provide a basis for all

linear functions defined on �t = 0� 1� . . . � T − 1 = 5}. The example can be

generalised to the case of a p-fold differencing matrix∇−p
T of order T . However,

in the program, the maximum degree of differencing is p = 2.

We observe that, if g∗ = Q�
∗y and g = Q�y are available, then y can be

recovered via the equation

y = S∗g∗ + Sg. (34)

In effect, the elements of g∗, which may be regarded as polynomial parameters,

provide the initial conditions for the process of summation or integration, which

we have been describing as a process of re-inflation.

The equations by which the estimates of ξ and η may be recovered from

those of δ and κ are analogous to equation (34). They are

x = S∗d∗ + Sd and h = S∗k∗ + Sk. (35)

In this case, the initial conditions d∗ and k∗ require to be estimated. The appro-

priate estimates are the values that minimise the function

�y − x)�Ω−1
η �y − x) = �y − S∗d∗ − Sd)�Ω−1

η �y − S∗d∗ − Sd) (36)

= �S∗k∗ + Sk)�Ω−1
η �S∗k∗ + Sk).

These values are

k∗ = −�S�∗Ω
−1
η S∗)

−1S�∗Ω
−1
η Sk (37)

and

d∗ = �S�∗Ω
−1
η S∗)

−1S�∗Ω
−1
η �y − Sd). (38)

Equations (37) and (38) together with (31) and (32) provide a complete

solution to the problem of estimating the components of the data. However,

it is possible to eliminate the initial conditions from the system of estimating

equations. This can be achieved with the help of the following identity:

P∗ = S∗�S
�
∗Ω

−1
η S∗)

−1S�∗Ω
−1
η (39)

= I −ΩηQ�Q�ΩηQ)−1Q� = I − PQ.
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In these terms, the equation of (35) for h becomes h = �I − P∗)Sk = PQSk.
Using the expression for k from (32) together with the identity Q�S = IT−2

gives

h = ΩηQ�Ωδ +Q�ΩηQ)−1Q�y. (40)

This can also be obtained from the equation (32) for k by the removal of the

leading differencing matrix Q�. It follows immediately that

x = y − h (41)

= y −ΩηQ�Ωδ +Q�ΩηQ)−1Q�y.

The elimination of the initial conditions is due to the fact that η is a sta-

tionary component. Therefore, it requires no initial conditions other than the

zeros that are the appropriate estimates of the pre-sample elements. The direct

estimate x of ξ does require initial conditions, but, in view of the adding-up

conditions of (21), x can be obtained more readily by subtracting from y the

estimate h of η, in the manner of equation (41).

Fig. 9. The periodogram of the first differences of the U.K. logarithmic con-

sumption data.

Observe that, since

f = S∗�S
�
∗S∗)

−1S�∗y (42)

is an expression for the vector of the ordinates of a polynomial function fitted to

the data by an ordinary least-squares regression, the identity of (39) informs us

that

f = y −Q�Q�Q)−1Q�y (43)

is an alternative expression.
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Fig. 10. The periodogram of the residual sequence obtained from the linear de-

trending of the logarithmic consumption data. A band, with a lower bound of

π/16 radians and an upper bound of π/3 radians, is masking the periodogram.

The residuals of an OLS polynomial regression of degree p, which are given
by y−f = Q�Q�Q)−1Q�y, contain same the information as the vector g = Q�y
of the p-th differences of the data. The difference operator has the effect of nul-
lifying the element of zero frequency and of attenuating radically the adjacent

low-frequency elements. Therefore, the low-frequency spectral structures of the

data are not perceptible in the periodogram of the differenced sequence. Figure

9 provides evidence of this.

On the other hand, the periodogram of a trended sequence is liable to be

dominated by its low-frequency components, which will mask the other spec-

tral structures. However, the periodogram of the residuals of the polynomial

regression can be relied upon to reveal the spectral structures at all frequencies.

Moreover, by varying the degree p of the polynomial, one is able to alter the

relative emphasis that is given to high-frequency and low-frequency structures.

Figure 10 shows that the low-frequency structure of the U.K. consumption data

is fully evident in the periodogram of the residuals from fitting a linear trend to

the logarithmic data.

4.2 A Flexible Smoothing Filter

A derivation of the estimator of ξ is available that completely circumvents the

problem of the initial conditions. This can be illustrated with the case of a gen-

eralised version of the Leser (1961) filter in which the smoothing parameter is

permitted to vary over the course of the sample. The values of the smoothing

parameter are contained in the diagonal matrix Λ = diag�λ0� λ1� . . . � λT−1}.
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Then, the criterion for finding the vector is to minimise

L = �y − ξ)��y − ξ) + ξ�QΛQ�ξ. (44)

The first term in this expression penalises departures of the resulting curve

from the data, whereas the second term imposes a penalty for a lack of smooth-

ness in the curve. The second term comprises d = Q�ξ, which is the vector of

the p-fold differences of ξ. The matrix Λ serves to generalise the overall mea-

sure of the curvature of the function that has the elements of ξ as its sampled

ordinates, and it serves to regulate the penalty for roughness, which may vary

over the sample.

10
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13

1875 1900 1925 1950 1975 2000

Fig. 11. The logarithms of annual U.K. real GDP from 1873 to 2001 with an

interpolated trend. The trend is estimated via a filter with a variable smoothing

parameter.

Differentiating L with respect to ξ and setting the result to zero, in accor-

dance with the first-order conditions for a minimum, gives

y − x = QΛQ�x = QΛd. (45)

Multiplying the equation by Q� gives Q��y − x) = Q�y − d = Q�QΛd, whence
Λd = �Λ−1 +Q�Q)−1Q�y. Putting this into the equation x = y −QΛd gives

x = y −Q�Λ−1 +Q�Q)−1Q�y (46)

= y − ΛQ�I + ΛQ�Q)−1Q�y.

This filter has been implemented in the program under the guise of a variable

smoothing procedure. By giving a high value to the smoothing parameter, a
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stiff curve can be generated, which approaches a straight line as λ → ∞. On

the other hand, structural breaks can be accommodated by greatly reducing the

value of the smoothing parameter in their neighbourhood. When λ → 0, the
filter tends to transmit the unaltered data values.

Figure 11 shown an example of the use of this filter. There were brief dis-

ruptions to the steady upwards progress of GDP in the U.K. after the two world

wars. These breaks have been absorbed into the trend by reducing the value of

the smoothing parameter in their localities. By contrast, the break that is evident

in the data following the year 1929 has not been accommodated in the trend.

4.3 A Seasonal-Adjustment Filter

The need for initial conditions cannot be circumvented in cases where the sea-

sonal adjustment filter is applied to trended sequences. Consider the filter that

is applied to the differenced data g = Q�y to produce a seasonally-adjusted

sequence q. Then, there is

q = QS�Q�
SQS + λ−1Q�

RQR)−1Q�
Sg� (47)

whereQ�
R andQ�

S are the matrix counterparts of the polynomial operatorsR�z)
and S�z) of (18) and (19) respectively. The seasonally adjusted version of the

original trended data will be obtained by re-inflating the filtered sequence q via
the equation

j = S∗q∗ + Sq� (48)

where

q∗ = �S�∗S∗)
−1S�∗�y − Sq) (49)

is the value that minimises the function

�y − j)��y − j) = �y − S∗q∗ + Sq)��S∗q∗ + Sq). (50)

5 The Frequency-Domain Filters

Often, in the analysis economic data, we would profit from the availability of

a sharp filter, with a rapid transition between the stop band and the pass band

that is capable of separating components of the data that lie in closely adjacent

frequency bands.

An example of the need for such a filter is provided by a monthly data se-

quence with an annual seasonal pattern superimposed on a trend–cycle trajec-

tory. The fundamental seasonal frequency is of π/6 radians or 30 degrees per

month, whereas the highest frequency of the trend–cycle component is liable to
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exceed π/9 radians or 20 degrees. This leaves a narrow frequency interval in

which a filter that is intended to separate the trend–cycle component from the

remaining elements must make the transition from its pass band to its stop band.

To achieve such a sharp transition, an FIR or moving-average filter requires

numerous coefficients covering a wide temporal span. Such filters are inappro-

priate to the short data sequences that are typical of econometric analyses. Ra-

tional filters or feedback filters, as we have described them, are capable of some-

what sharper transitions, but they also have their limitations.

When a sharp transition is achieved by virtue of a rational filter with rela-

tively many coefficients, the filter tends to be unstable on account of the prox-

imity of some its poles to the circumference of the unit circle. (See Figure 7 for

an example.) Such filters can be excessively influenced by noise contamination

in the data and by the enduring effects of ill-chosen initial conditions.

A more effective way of achieving a sharp cut-off is to conduct the filtering

operations in the frequency domain. Reference to equation (1) shows that an

ideal filter can be obtained by replacing with zeros the Fourier coefficients that

are associated with frequencies that fall within the stop band.

5.1 Complex Exponentials and the Fourier Transform

The Fourier coefficients are determined by regressing the data on the trigono-

metrical functions of the Fourier frequencies according to the following formu-

lae:

αj =
2

T

�

t

yt cosωjt� and βj =
2

T

�

t

yt sinωjt. (51)

Also, there is α0 = T−1
�

t yt = ȳ, and, in the case where T = 2n is an even

number, there is αn = T−1
�

t�−1)tyt.

It is more convenient to work with complex Fourier coefficients and with

complex exponential functions in place sines and cosines. Therefore, we define

ζj =
αj − iβj

2
. (52)

Since cos�ωjt) − sin�ωjt) = e−iωjt, it follows that the complex Fourier trans-

form and its inverse are given by

ζj =
1

T

T−1�

t=0

yte
−iωjt ←→ yt =

T−1�

j=0

ζje
iωjt� (53)
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where ζT−j = ζ∗j = �αj + βj)/2. For a matrix representation of these trans-

forms, one may define

U = T−1/2[exp�−i2πtj/T}; t� j = 0� . . . � T − 1]� (54)

Ū = T−1/2[exp�i2πtj/T}; t� j = 0� . . . � T − 1]�

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

ζ = T−1/2Uy ←→ y = T 1/2Ūζ� (55)

where y = [y0� y1� . . . yT−1]
� and ζ = [ζ0� ζ1� . . . ζT−1]

� are the vectors of the

data and of their spectral ordinates, respectively.

This notation can be used to advantage for representing the process of ap-

plying an ideal frequency-selective filter. Let J be a diagonal selection matrix

of order T of zeros and units, wherein the units correspond to the frequencies

of the pass band and the zeros to those of the stop band. Then, the selected

Fourier ordinates are the nonzero elements of the vector Jζ. By an application

of the inverse Fourier transform, the selected elements are carried back to the

time domain to form the filtered sequence. Thus, there is

x = ŪJUy = Ψy. (56)

Here, ŪJU = Ψ = [ψ◦�i−j�; i� j = 0� . . . � T − 1] is a circulant matrix of the

filter coefficients that would result from wrapping the infinite sequence of the

ideal bandpass coefficients around a circle of circumference T and adding the

overlying elements. Thus

ψ◦k =

∞�

q=−∞

ψqT+k. (57)

Applying the wrapped filter to the finite data sequence via a circular convo-

lution is equivalent to applying the original filter to an infinite periodic extension

of the data sequence. In practice, the wrapped coefficients of the time-domain

filter matrix Ψ would be obtained from the Fourier transform of the vector of

the diagonal elements of the matrix J . However, it is more efficient to perform

the filtering by operating upon the Fourier ordinates in the frequency domain,

which is how the program operates.

The method of frequency-domain filtering can be used to mimic the effects

of any linear time-invariant filter, operating in the time domain, that has a well-

defined frequency-response function. All that is required is to replace the selec-

tion matrix J of equation (56) by a diagonal matrix containing the ordinates of
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Fig. 12. The residual sequence from fitting a linear trend to the logarithmic con-

sumption data with an interpolated function representing the business cycle.

the desired frequency response, sampled at points corresponding to the Fourier

frequencies.

In the case of the Wiener–Kolmogorov filters, defined by equation (24) and

(25), one can consider replacing the dispersion matrices Ωξ and Ωη by their

circular counterparts

Ω◦
ξ = ŪΛξU and Ω◦

η = ŪΛηU. (58)

Here, Λξ and Λη are diagonal matrices containing ordinates sampled from the

spectral density functions of the respective processes. The resulting equations

for the filtered sequences are

x = Ω◦
ξ �Ω◦

ξ +Ω◦
η)−1y = ŪΛξ�Λξ + Λη)

−1Uy = ŪJξUy (59)

and

h = Ω◦
η�Ω◦

ξ +Ω◦
η)−1y = ŪΛη�Λξ + Λη)

−1Uy = ŪJηUy. (60)

An example of the application of the lowpass frequency-domain filter is pro-

vided by Figure 12. Here, a filter with a precise cut-off frequency of π/8 radians

has been applied to the residuals from the linear detrending of the logarithms of

the U.K. consumption data.

The appropriate cut-off frequency for this filter has been indicated by the

periodogram of Figure 10. The smooth curve that has been interpolated through

these residuals has been constituted from the Fourier ordinates in the interval

[0� π/8].
The same residual sequence has also been subjected to the approximate

bandpass filter of Christiano and Fitzgerald (2003) to generate the estimated
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business cycle of Figure 4. This estimate fails to capture some of the salient

low-frequency fluctuations of the data.

The highlighted region Figure 10 also show the extent of the pass band of

the bandpass filter; and it appears that the low-frequency structure of the data

falls mainly below this band. The fact that, nevertheless, the filter of Christiano

and Fitzgerald does reflect a small proportion of the low-frequency fluctuations

is due to its substantial leakage over the interval [0� π/16], which falls within its
nominal stop band.

5.2 Extrapolations and Detrending

To apply the frequency-domain filtering methods, the data must be free of trend.

The detrending can be achieved either by differencing the data or by applying

the filter to data that are residuals from fitting a polynomial trend. The program

has a facility for fitting a polynomial time trend of a degree not exceeding 15.

To avoid the problems of collinearity that arise in fitting ordinary polynomials

specified in terms of the powers of the temporal index t, a flexible generalised
least-squares procedure is provided that depends upon a system of orthogonal

polynomials.

In applying the methods, it is also important to ensure that there are no

significant disjunctions in the periodic extension of the data at the points where

the end of one replication of the sample sequence joins the beginning of the

next replication. Equivalently, there must be a smooth transition between the

start and finish points when the sequence of T data points is wrapped around a

circle of circumference T .

The conventional means of avoiding such disjunctions is to taper the mean-

adjusted, detrended data sequence so that both ends decay to zero. (See Bloom-

field 1976, for example.) The disadvantage of this recourse is that it falsifies the

data at the ends of the sequence, which is particularly inconvenient if, as is often

the case in economics, attention is focussed on the most recent data. To avoid

this difficulty, the tapering can be applied to some extrapolations, which can be

added to the data, either before or after it has been detrended.

In the first case, a polynomial is fitted to the data; and tapered versions

of the residual sequence that have been reflected around the endpoints of the

sample are added to the extrapolated branches of the polynomial. Alternatively,

if the data show strong seasonal fluctuations, then a tapered sequence based

on successive repetitions of the ultimate seasonal cycle is added to the upper

branch, and a similar sequence based on the first cycle is added to the lower

branch.
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In the second case, where the data have already been detrended, by the sub-

traction of a polynomial trend or by the application of the differencing operator,

the extrapolations will be added to the horizontal axis.

This method of extrapolation will prevent the end of the sample from being

joined directly to its beginning. When the data are supplemented by extrapola-

tions, the circularity of the filter will effect only the furthest points the extrap-

olations, and the extrapolations will usually be discarded after the filtering has

taken place. However, in many cases, extrapolations and their associated taper-

ing will prove to be unnecessary. A case in point is provided by the filtering of

the residual sequence of the logarithmic consumption data that is illustrated by

Figure 12.

5.3 Anti-Differencing

After a differenced data sequence has been filtered, it will be required to reverse

the effects of the differencing via a process of re-inflation. The process can be

conducted in the time domain in the manner that has been indicated in section

4, where expressions have been derived for the initial conditions that must ac-

company the summation operations.

However, if the filtered sequence is the product of a highpass filter and if

the original data have been subjected to a twofold differencing operation, then

an alternative method of re-inflation is available that operates in the frequency

domain. This method is used in the program only if the filtering itself has taken

place in the frequency domain.

10

10.5

11

11.5

0 50 100 150

Fig. 13. The trend-cycle component of U.K. consumption determined by the

frequency-domain method, superimposed on the logarithmic data.
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In that case, the reduction to stationarity will be by virtue of a centralised

twofold differencing operator of the form

�1− z−1)�1− z) = −z∇2�z) (61)

The frequency-response function of the operator, which is obtained by setting

z = exp�−iω} in this equation, is

f�ω) = 2− 2 cos�ω). (62)

The frequency response of the anti-differencing operator is v�ω) = 1/f�ω).
The matrix version of the centralised operator can be illustrated by the case

where T = 5:

N5 =

�




n�0

−Q�

n�4




 = −

�







−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

0 0 0 1 −2








. (63)

In applying this operator to the data, the first and the last elements of NT y,
which are denoted by n�0y and n�T−1y, respectively, are not true differences.

Therefore, they are discarded to leave −Q�y = [q1� . . . � qT−2]
�. To compensate

for this loss, appropriate values are attributed to q0 and qT−1, which are formed

from combinations of the adjacent values, to create a vector of order T denoted

by q = [q0� q1� . . . � qT−2� qT−1]
�.

The highpass filtering of the data comprises the following steps. First, the

vector q is translated to the frequency domain to give γ = Uq. Then, the
frequency-response matrix Jη is applied to the resulting Fourier ordinates. Next,

in order to compensate for the effects of differencing, the vector of Fourier

ordinates is premultiplied by a diagonal matrix V = diag�v0� v1� . . . � vT−1},
wherein vj = 1/f�ωj); j = 0� . . . � T − 1, with ωj = 2πj/T . Finally, the result
is translated back to the time domain to create the vector h.

The vector of the complementary component is x = y − h. Thus there are

h = ŪHηUq and x = y − ŪHηUq� (64)

where Hη = V Jη. It should be noted that the technique of re-inflating the

data within the frequency domain cannot be applied in the case of a lowpass

component for the reason that f�0) = 0 and, therefore, the function v�ω) =
1/f�ω) is unbounded at the zero frequency ω = 0. However, as the above

equations indicate, this is no impediment to the estimation of the corresponding

component x.
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An example of the application of these procedures is provided by Figure

13, which concerns the familiar logarithmic consumption data, through which

a smooth trend-cycle function has been interpolated. This is indistinguishable

from the function that is obtained by adding the smooth business-cycle of Fig-

ure 12 to the linear trend that was subtracted from the data in the process of de-

trending it. The program also allows the trend-cycle function to be constructed

in this manner.
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Fig. 14. The plot of a seasonally adjusted version of the consumption data of

Figures 2 and 13, obtained via the time domain filter.
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Fig. 15. The seasonal component extracted from the U.K. consumption data by

a time-domain filter.
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Fig. 16. The seasonal component extracted from the U.K. consumption data by

a frequency-domain filter.

5.4 Seasonal Adjustment in the Frequency Domain

The method of frequency-domain filtering is particularly effective in connec-

tion with the seasonal adjustment of monthly or quarterly data. It enables one

to remove elements not only at the seasonal frequencies but also at adjacent fre-

quencies by allowing one to define a neighbourhood for each of the stop bands

surrounding the fundamental seasonal frequency and its harmonics.

If only the fundamental seasonal element and its harmonics are entailed in

its synthesis, then the estimated seasonal component will be invariant from year

to year. If elements at the adjacent frequencies are also present in the synthesis,

then it will evolve gradually over the length of the sample period.

The effects of the seasonal-adjustment filters of the program are illustrated

in Figures 14–16. Figure 14 shows the seasonally adjusted version of the log-

arithmic consumption data that has been obtained via the Wiener–Kolmogorov

filter of section 4. Figure 15 shows the seasonal component that has been ex-

tracted in the process.

The regularity of this component is, to some extent, the product of the filter.

Figure 16 shows a less regular seasonal component that has been extracted by

the frequency-domain filter described in the present section. This component

has been synthesised from elements at the Fourier frequencies and from those

adjacent to them that have some prominence if the periodogram of Figure 10.

6 The Program and its Code

The code of the program that has been described in this paper is freely available

at the web address that has been given. This code is in Pascal. A parallel code
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in C has been generated with the help of a Pascal-to-C translator, which has

been written by the author. The aim has been to make the program platform-

independent and to enable parts of it to be realised in other environments.

This objective has dictated some of the features of the user interface of the

program, which, in its present form, eschews such devices as pull-down menus

and dialogue boxes etc. Subsequent versions of the program will make limited

use of such enhancements.

However, the nostrum that a modern computer program should have a mod-

eless interface will be resisted. Whereas such an interface is necessary for pro-

grams such as word processors, where all of the functions should be accessible

at all times, it is less appropriate to statistical programs where, in most circum-

stances, the user will face a restricted set of options. Indeed, the present program

is designed to restrict the options, at each stage of the operations, to those that

are relevant.

A consequence of this design is that there is no need of a manual of instruc-

tions to accompany the program. Instead, the three log files that record the steps

taken in filtering some typical data sequences should provide enough help to get

the user underway. What is more important is that the user should understand

the nature of the statistical procedures that have been implemented; and this has

been the purpose of the present paper.
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