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Preliminary remarks

I will exploit my privilege to talk first about the
state of the gretl project, since there are some
nice things to report!



regls: an instance of hybrid design

Like our dbnomics and geoplot addons, regls
has a bybrid design.

Combination of hansl and C components.

C for speed; hansl for brevity, transparency and
ease of maintenance.

Briefly visit some examples...
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Regularized least squares

ñ Why? Danger of over-fitting, focus on
out-of-sample prediction

ñ What methods? LASSO, Ridge regression,
Elastic net

ñ What limitations? No generalized linear
models at present
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LASSO 1

I will concentrate on LASSO, because of

ñ my time limitation
ñ its computational interest
ñ its effectiveness
ñ the relative transparency of the regularization factor



LASSO 1

I will concentrate on LASSO, because of

ñ my time limitation
ñ its computational interest
ñ its effectiveness
ñ the relative transparency of the regularization factor



LASSO 1

I will concentrate on LASSO, because of

ñ my time limitation
ñ its computational interest
ñ its effectiveness
ñ the relative transparency of the regularization factor



LASSO 1

I will concentrate on LASSO, because of

ñ my time limitation
ñ its computational interest
ñ its effectiveness
ñ the relative transparency of the regularization factor



LASSO 2

We use the parameterization of Boyd et al (2010), with
objective:

min
β̂

1
2

n∑
i=1

(yi − Xiβ̂)2 + λ
k∑

j=1

|β̂j|

n = number of observations
k = number of candidate regressors (columns of X )
λ ≥ 0 is the regularization hyperparameter

λ = 0 gives plain OLS. And

λmax = ‖X ′y‖∞

drives all elements of β̂ to zero.

Key regls control variable: s = λ/λmax



Scripting basics

regls function signature:

bundle b = regls(series y, list X,
const bundle params[null])

The params bundle can contain a lot of controls, but all
have default values.

Minimal directive for invoking cross validation:

bundle b = regls(y, X, _(xvalidate=1))

See the doc for details! And then there’s the GUI...
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LASSO 3

Two comparisons of interest:

1. Numerical algorithm to pick the β̂ that minimizes the
LASSO criterion. We compare ADMM (Boyd et al.) with
CCD (glmnet).

2. Alternative cross validation methodologies.

ADMM = Alternating Direction Method of Multipliers
CCD = Cyclical Coordinate Descent

Both algorithms are available in regls.

Full details on these points can be found in the Appendices
to the regls documentation.



LASSO 3

Two comparisons of interest:

1. Numerical algorithm to pick the β̂ that minimizes the
LASSO criterion. We compare ADMM (Boyd et al.) with
CCD (glmnet).

2. Alternative cross validation methodologies.

ADMM = Alternating Direction Method of Multipliers
CCD = Cyclical Coordinate Descent

Both algorithms are available in regls.

Full details on these points can be found in the Appendices
to the regls documentation.



LASSO 3

Two comparisons of interest:

1. Numerical algorithm to pick the β̂ that minimizes the
LASSO criterion. We compare ADMM (Boyd et al.) with
CCD (glmnet).

2. Alternative cross validation methodologies.

ADMM = Alternating Direction Method of Multipliers
CCD = Cyclical Coordinate Descent

Both algorithms are available in regls.

Full details on these points can be found in the Appendices
to the regls documentation.



ADMM vs CCD accuracy experiment: setup

Use the US murder rates dataset supplied with regls:
murdPerPop as dependent variable and 101 candidate
regressors. Data pre-standardized in this experiment.

Perform LASSO estimation using 20 values of λ, 800
observations. Record the minimized LASSO criteria, ci,
i = 1,2, . . . ,20.

Take ADMM as baseline; compare with CCD starting at its
default tolerance and progressively tightening.

Comparative measures:

ñ Euclidean distance between results:
√
(dc′dc), where dc

is the difference vector cadmm − cccd.

ñ Relative execution time: CCD/ADMM.
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red (left); relative execution time in blue (right).



Cross validation methodology

This differs between regls and the glmnet package for R.

ñ regls: standardization and computation of λ-sequence
are done once, using the entire training sample.

ñ glmnet: standardization and computation of λ-sequence
are done per-fold, using the sample complementary to
the given fold.

It is not clear a priori which method will produce better
results.

But the results should not differ by much if the training data
are relatively homogeneous.
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Cross validation experiment

ñ Dataset 1: murder rates and covariates for US localities,
n = 2215, k = 102.

ñ Dataset 2: white wine quality and physico-chemical
covariates, n = 4898,k = 12 (78 after adding squares
and interactions).

At each of 2000 iterations:

ñ Randomize the order of the entire dataset.

ñ Use the first N observations for training and the next M
for testing. (Dataset 1: N = 1200, M = 200; Dataset 2:
N = 1500, M = 500.)

ñ Perform cross validation with 10 folds.

ñ Select optimal λ on the “one standard error” rule.

ñ Predict for the testing observations and calculate
R2 = 1−

∑
(y − ŷ)2/

∑
(y − ȳ)2.
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∑
(y − ȳ)2.
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Out-of-sample R2, comparative statistics, 2000 trials

mean s.d. s.e.(mean) median
glmnet 0.4724 0.1518 0.0034 0.4881

regls CCD 0.4954 0.1545 0.0035 0.5118
regls ADMM 0.4984 0.1608 0.0036 0.5172

Paired-difference tests and correlations

|z| ρ

glmnet, regls CCD 20.6 0.946
glmnet, regls ADMM 21.6 0.942

regls CCD, regls ADMM 8.4 0.996

Maybe easier to visualize. . .
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Dataset heterogeneity?

For K trials indexed by i and F folds indexed by j, ȳ = sample
mean and s = sample standard deviation of the dependent
variable:

Hµ = K−1
K∑

i=1

F∑
j=1

|ȳij − ȳi|/|ȳi|

Hσ = K−1
K∑

i=1

F∑
j=1

|sij − si|/si

Hµ Hσ
Murder rates data 0.12059 0.15032
Wine quality data 0.01039 0.05089
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